This paper presents the preliminary study on the fluid-structure interaction (FSI) analysis of dynamic intraocular pressure (IOP) in the human eye. Because Glaucoma, a chronic disease of the optic nerve, can lead to blindness, the monitoring of IOP through tonometry is essential to prevent the increase of IOP. One of the most common tonometry methods to estimate IOP includes measuring corneal deflection by using either a direct contact or non-contact (e.g. air puff) impact force. Then, the dynamic characteristics of IOP should be investigated for improved correlation to IOP monitoring systems. In this paper, we develop a finite element model of a human eye as a spherically shaped structure filled with inviscid pressurized fluid to solve a problem of a fluid-coupled structural interaction of eye. The structural shape effects due to change in IOP are examined, and the proposed model is modified to further examine by including the mechano-luminescence (ML) membrane acting as IOP monitoring element. The effect of biomechanical parameters such as the ML membrane thickness is investigated based on the air puffy type applanation tonometry models.
The eardrum (also known as tympanic membrane, TM) in human auditory system has a curved conical shape with the apex pointing medially. It generally receives airborne sound waves collected by the outer ear, transforms them into mechanical vibrations in the eardrum, and eventually transmits the vibrations to the middle ear, which is similar with acoustic transducers such as microphones. In this research, new approach inspired by the human auditory system is explored to address the challenging difficulties for developing advanced acoustic transducers. In addition, a frequency response function analysis is performed to validate the inverse anti-resonance vibrating structure inspired by human middle ear including ear-drum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.