We demonstrate ultrafast high-power laser operation, both at multi-kW average power in ultrashort-pulsed operation over extended bursts with hundreds of MHz intra-burst repetition rate from a modified TruMicro 6020 industrial laser, as well as uninterrupted, quasi-CW operation at an average power beyond 1 kW obtained with a TEM00 multipass thin-disk laser booster amplifier. The pulse repetition rate can be varied from 50 MHz to beyond 1 GHz, with single-pulse energies well above 10 μJ and single-pulse peak powers far beyond 10 MW without a post-compressor. These systems are attractive, e.g., for high-throughput materials processing or for driving nonlinear processes.
Industrial ultrafast lasers such as TRUMPF’s TruMicro Series are indispensable tools in many precision machining processes. Large 24/7 applications range from machining of sapphire or glass to ceramics, polymers, and metals in industries from the automotive sector to consumer electronics. In typical installations such pico- and femtosecond lasers currently operate at average power levels up to 150 W, often with nonlinear frequency conversion to the visible or UV. Based on the advanced amplifier technology pioneered by AMPHOS we introduce our new hybrid fiber–InnoSlab amplifier generation TruMicro Series 6000, capable of producing the highest average power at utmost flexibility and reliability.
A novel optical concept is introduced with standard components for highly efficient coherent beam combining a system of (N x N) beams. In a proof-of-principle experiment a well-defined setup with microlens arrays (MLAs) is used to create a beam matrix of 5 x 5 beams. For the combination step the same setup is employed, and the created 25 beams are combined. A combination efficiency above 90% is achieved. Furthermore, the concept allows for dynamic beam combination, i.e., the resulting number of beams and corresponding positions can be controlled by the absolute phases of the array of input beams. A proof-of-principle experiment shows excellent agreement with the model.
Transverse mode instabilities (TMI) have become a very serious problem for the further scaling of the average power of fiber laser systems. Recently the strong impact that photodarkening (PD) has on the TMI threshold of Yb-doped fiber laser systems has been revealed. This is a remarkable finding since it opens the door to a significant increase of the average power of fiber laser systems in the near future. The key to achieve this is to reduce the amount of PD losses in the fiber, which can be done with an optimization of the glass composition in the fiber. In this work we perform a theoretical study on the impact that co-dopants such as Al and P have on PD and on the TMI threshold. This analysis tries to find the optimum glass composition from the point of view of TMI. It is shown that in a short rod type fiber, changing the glass composition only leads to a modest increase of the TMI threshold due to the degradation of the cross-sections. This demonstrates that the optimization of the glass cannot be done attending only to the PD losses at the cost of the laser cross-sections. In spite of this, changing the glass composition can bring benefits in pulsed operation in terms of the stored energy. Additionally, other fiber geometries different from the rod-type can benefit in a greater degree by introducing co-dopants in the glass.
The phenomenon of transverse mode instabilities (TMI) is currently the most limiting effect for the scaling of the average output power of fiber laser systems with nearly diffraction-limited beam quality. Thus, it is of high interest to develop efficient mitigation strategies to further enhance the performance of fiber laser systems. By actively modulating the pump power of an Yb-doped rod-type fiber amplifier, it was possible to weaken the thermally-induced refractive index grating along the fiber and, thus, to mitigate TMI to a large extent. A significant advantage of this approach is that it can be easily integrated in any existing fiber-laser system since no further optical components are needed. A function generator connected to the pump diode driver was used to achieve the modulation. With this setup we were able to extract a fully stabilized beam at ~ 1.5 times above the TMI threshold. Furthermore, a stabilization of the beam was still feasible at an average output power of 628 W, which is more than three times higher than the free-running TMI threshold of that particular fiber under identical conditions (e.g. seed power). This is the highest average output power reported from a single-channel rod-type fiber amplifier with a high-quality stabilized beam, to the best of our knowledge.
The phenomenon of transverse mode instabilities (TMI) is currently the most limiting effect for the scaling of the average output power of fiber laser systems with nearly diffraction-limited beam quality. Even though a significant amount of knowledge on TMI in single-pass fiber amplifiers has been generated in the last years, relatively little is known about this effect in multi-pass amplifiers and oscillators. In this contribution TMI is experimentally investigated in a double-pass fiber amplifier, for the first time to the best of our knowledge. The TMI threshold was found to be significantly lower in the double-pass configuration than in the single-pass arrangement. Furthermore, the investigations unveiled a complex dynamic behavior of the instabilities in the double-pass fiber amplifier.
The maximum average power that can be emitted from an ytterbium-doped fiber-laser system is estimated. The analysis takes into account all the effects known so far that may limit the average power including transverse mode instabilities and photo darkening. Hereby, the recent experimental observation that transverse mode instabilities depend on the average heat load in a fiber amplifier is exploited. The results of this analysis show that there are three main limiting effects: stimulated Raman scattering, the brightness of the pump laser and transverse mode instabilities. Moreover, the analysis suggests that, disregarding possible practical constrains, the average output power of a fiber laser system can be, in principle, increased up to 70kW.
In this work we present guidelines to increase the transverse mode instability threshold of high power fiber amplifiers and also, for the first time to the best of our knowledge, of fiber oscillators. These guidelines do not involve changes in the composition of the active material (except for its doping concentration), but they can still lead to a significant increase of the transverse mode instability threshold. The dependence of this parameter on the active ion concentration, the core conformation, the pump configuration and the mirror reflectivities in a fiber oscillator will be studied and discussed.
In this work the latest progress in the understanding of mode instabilities is reviewed. Particular emphasis is put on the recently established influence of photodarkening on the mode instability threshold and its behavior. It is shown, for example, that even degradations of the output power in the order of a few percent can lead to very significant reductions of the mode instability threshold. Moreover, our analysis shows that photodarkening also alters the expected behavior of the mode instability threshold with respect to the signal wavelength and the seed power. Thus photodarkening is revealed as one of the main effects shaping the behavior of the mode instability threshold observed in experiments.
The threshold-like onset of mode instabilities is currently the main limitation for the scaling of the average output power of fiber-laser systems with diffraction limited beam quality. In this contribution wavelength shifting of the seed signal has been experimentally investigated in order to mitigate mode instabilities. Against the expectations, it is experimentally shown that the highest mode instabilities threshold is reached around 1030 nm and not for the smallest wavelength separation between pump and signal wavelength. This finding implies that the quantum defect is not the sole significant source for thermal heating in the fiber.
In this contribution we demonstrate a single mode continuous wave laser amplifier with 146 W of power at a wavelength of 1009 nm. On one hand this experiments constitutes an extension of the wavelength range of high power fiber lasers, furthermore, emission wavelength well below 1030 nm find use for efficient high-brightness tandem pumping of high power fiber amplifiers. The wavelength and bandwidth of the seed oscillator are defined by a pair of fiber Bragg gratings. This seed is amplified in a two-stage Ytterbium-doped rod-type amplifier to 146 W with a high slope efficiency of 64 %, an excellent beam quality and an ASE-suppression as high as 63 dB.
Large mode area rod-type fibers have enabled amplification of ultra-short pulses to mJ pulse energy and MW peak powers. For very large mode field areas, fibers have to be designed as rigid rods with typical fiber lengths of around 1 m for efficient operation. A shorter fiber length can be desirable to reduce the packaging size of commercial systems and to decrease the impact of parasitic nonlinear effects for peakpower scaling. The fiber design presented here is based on a modified large-pitch fiber with an effectively higher ytterbium concentration in the fiber core. To achieve index matching the cladding index needs to be changed. In this contribution we propose to co-dope the passive host material with germanium to match both indices and to obtain a higher Yb-concentration within the active core. Compared to standard LPF, where the core index is reduced by co-doping the core with Flourine, the ytterbium doping concentration of this novel germanium-pedestal LPF is doubled. A detailed numerical and experimental investigation shows that with short fiber lengths <40cm is feasible to achieve output powers beyond 100W with 10W seed. Significantly higher gains, of nearly 30 dB, can be achieved for fiber lengths in the order of 60cm. A similar gain can be expected in a conventional LPF with 1.20 m length. In conclusion, we demonstrate a fiber design for significantly enhanced energy storage per fiber length and improved pump absorption. This concept will notably reduce the footprint of ultra-short fiber laser systems.
The phenomenon of mode instabilities has quickly become the most limiting effect for a further scaling of the average power of fiber laser systems. Consequently it is of great importance to find solutions for this problem. In this work we propose two concrete possible passive mitigation strategies: the first one is based on the reduction of the heat load in the fiber, whereas the second one is based on the reduction of the pump absorption. In both cases a significant increase of the threshold is expected.
The phenomenon of mode instabilities has quickly become the most limiting effect for a further scaling of the average power of fiber laser systems. It is important to get a detailed understanding of its physical origin in order to develop efficient mitigation strategies. In this work we present an analysis of the different physical processes that give rise to mode instabilities and reveal that thermally-induced non-adiabatic waveguide changes play a key role. With this insight in the physical processes underlying mode instabilities a semi-analytic formula is obtained and several mitigation guidelines will be presented and discussed.
By dynamically varying the power content of the excited fiber modes of the main amplifier of a fiber-based MOPA system at high average output power levels, it was possible to mitigate mode instabilities to a large extent. In order to achieve the excitation variation, we used an acousto-optic deflector in front of the Yb-doped rod-type fiber. Therewith, it was possible to significantly increase both the average and the instantaneous minimum power content of the fundamental mode. This, consequently, led to a substantial improvement of the beam quality and pointing stability at power levels well beyond the threshold of mode instabilities.
There is a great interest in obtaining laser pulses with a high average power as well as high pulse energies. Continuously pulsed systems face many problems to satisfy those requirements, independent on the amplifier concept. While many applications such as electron beam characterization and free-electron-laser seeding need high pulse energies at high repetition rates, they only need those laser pulses for a certain amount of time. Therefore, it is not necessary to run a laser system with continuous pulses at those parameters and a so-called burst mode might be sufficient and even essential in such cases. We report on a CPA-laser system, based on a large pitch fiber as a main-amplifier delivering bursts containing ultra-short, highly-energetic pulses. The burst rate is set to 20Hz, while each burst contains 2000 pulses at a pulse-repetition-rate of 10MHz and with a pulse-duration of 700fs. Hence the duty cycle D is 0.4%. To achieve a homogeneous pulse energy level between 27μJ and 31μJ after the compression, the main amplifier is pumped with a very high power of 1.6kW in a burst-mode (D=10%). By using an acousto-optical modulator (AOM) after the main-amp fiber, the residual output before and after the burst is removed to suppress ASE and any underground-pulses around the amplified burst. The limitations that could be observed during this experiment were mainly due to mode instabilities, which were detectable even on a very short time scale of a few hundred μs using a high speed camera.
Detailed simulations on the temperature profile inside of a large mode area fiber in high power operation with mode
interference are presented. These simulations show that the pump power is not homogeneously absorbed along the fiber,
which in turn gives rise to an oscillating temperature profile along the fiber. This longitudinal temperature profile creates
an index grating with the right period to transfer energy between the interfering modes. Two cases are analyzed: mode
beating between the fundamental mode and a radially anti-symmetric mode and mode beating between the fundamental
mode and a radially symmetric mode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.