With global trends in population aging, the need to decrease and prevent the onset of cardiovascular disease has drawn a great attention. The traditional cuff-based upper arm sphygmomanometer is still the standard method to retrieve blood pressure information for diagnostics. However, this method is not easy to be adapted by patients and is not comfortable enough to perform a long term monitoring process. In order to correlate the beating profile of the arterial pulse on the wrist skin, an Advanced Vibrometer Interferometer Device (AVID) is adopted in this study to measure the vibration amplitude of skin and compare it with blood pressure measured from the upper arm. The AVID system can measure vibration and remove the directional ambiguity by using circular polarization interferometer technique with two orthogonal polarized light beams. The displacement resolution of the system is nearly 1.0 nm and the accuracy is experimentally verified. Using an optical method to quantify wrist pule, it provides a means to perform cuff-less, noninvasive and continuous measurement. In this paper, the correlations between the amplitude of skin vibration and the actual blood pressure is studied. The success of this method could potentially set the foundation of blood pressure monitor system based on optical approaches.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.