The ability to automatically detect, classify, calculate the size, number, and grade of retinal cells and other biological objects is critically important in eye disease like age-related macular degeneration (AMD). In this paper, we developed an automated tool based on deep learning technique and Mask R-CNN model to analyze large datasets of transmission electron microscopy (TEM) images and quantify retinal cells with high speed and precision. We considered three categories for outer nuclear layer (ONL) cells: live, intermediate, and pyknotic. We trained the model using a dataset of 24 samples. We then optimized the hyper-parameters using another set of 6 samples. The results of this research, after applying to the test datasets, demonstrated that our method is highly accurate for automatically detecting, categorizing, and counting cell nuclei in the ONL of the retina. Performance of our model was tested using general metrics: general mean average precision (mAP) for detection; and precision, recall, F1-score, and accuracy for categorizing and counting.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.