As the process node becomes more advanced, the accuracy and precision in OPC pattern CD are required in mask
manufacturing. CD SEM is an essential tool to confirm the mask quality such as CD control, CD uniformity and CD
mean to target (MTT).
Unfortunately, in some cases of arbitrary enclosed patterns or aggressive OPC patterns, for instance, line with tiny
jogs and curvilinear SRAF, CD variation depending on region of interest (ROI) is a very serious problem in mask CD
control, even it decreases the wafer yield. For overcoming this situation, the 2-dimensional (2D) method by Holon is
adopted. In this paper, we summarize the comparisons of error budget between conventional (1D) and 2D data using CD
SEM and the CD performance between mask and wafer by complex OPC patterns including ILT features.
Mask defect disposition gets more difficult and time-consuming with each progressive lithography node. Mask
inspection tools commonly use 250 nm wavelength, giving resolution of 180 nm, so critical defect sizes are far less than
the optical resolution - too small for defect analysis. Thus the rate of false or nuisance defect detection is increasing
rapidly and analysis of detected defects is increasingly difficult. As to judging the wafer printability of defects, AIMS
(Aerial Image Measurement System) tools are commonly used but are also time-consuming if defect count is high. For
improving the efficiency of mask defect disposition, we propose the combination of a SEM defect review tool and defect
disposition and simulation software, which use high-resolution SEM images of defects to do defect review, defect
disposition, and wafer printing simulation of defects automatically or manually.
The SEM defect review tool, DIS-05 developed by Holon Co. Ltd., is designed for defect review and disposition using
reference images derived from e-beam files or CAD database. This tool uses the Automated Defect Analysis Software
(ADAS) developed from AVI LLC. to interface the inspection tool and the DIS-05. ADAS detects false defects before
SEM imaging and performs aerial image simulation from the SEM and CAD images to estimate the wafer CD error
caused by each defect. We report on its speed (>300 defects/hour), classification accuracy and simulation accuracy when
used with masks at the 45 nm technology node and beyond. This combination of SEM and ADAS is expected to
significantly accelerate process development and production for the 45 and 32 nm nodes. It will also increase the masksper-
day throughput of inspection and AIMS tools by shifting most defect review to ADAS software using SEM images.
At preliminary tests showed the combination tool can do auto defect disposition and simulation with promising results.
This article presents novel defect review tool developed from CD-SEM, and its application for identification,
classification and judgment of false or nuisance defects.
Mask inspection tool is indispensable for mask production. Since conventional inspection tools use the optical source,
some of the defects are difficult to be identified and classified in the proper manner because the tool resolution is not
sufficient.
We have developed the Defect Imaging System (DIS-05) based on CD-SEM which uses secondary electron and
backscattered electron images. These SEM images are used for reviewing the defects detected in advance by optical
inspection tools. This system also includes Die-to-Die, Die-to-Database and "any shaped pattern area measurement" of
Holon original development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.