Polyaniline (PANI) is one of the most studied conducting polymers. Obtained in its conducting form (known as "emeraldine salt") by chemical or electrochemical oxidation of aniline in aqueous acidic medium, this polymer manifests an array of attractive properties. In our work, we investigate the properties of PANI in the form of nanofibers and establish the relationship between the level of doping, optical properties and the conductivity. Two methodologies, chemical and electro-chemical polymerization were used to deposit PANI. In former, dedoped PANI was deposited as a thin film on the glass substrate which was then doped with different concentrations of hydrochloric acid (HCl) to observe the change in conductivity and color. UV-Visible spectra (transmittance and absorbance) of the films were acquired and their conductivities were measured using a four-probe setup. In the latter method, PANI in the emeraldine salt form were deposited on ITO glass using an electrolytic cell. The voltage, temperature and electrolytic environment were varied to analyze the effect of change of doping levels on the optical and electrical properties of PANI. Surface electron microscope images were also taken which showed the nanofibers possessing circular cross sections in the order of 30-60 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.