Material properties of bone are crucial for studies regarding the mechanical behavior of bone. The mechanical behavior depends on the macro- and micro-architecture as well as the organic and mineral content of bone. The marco-architecture of bone is normally analyzed by plane radiographs. The micro-architecture of the trabecular bone can be imaged by high resolution CT imaging techniques using conventional x-ray tubes. However, fine structures in bone architecture cannot be sufficiently analyzed by this technique due to its limited resolution. High resolution CT imaging technique using synchrotron radiation generates images with a high spatial resolution of bone structures on a micron scale. Additionally, this imaging technique provides superior determination of local differences in the bone mineral density. Two microtomography techniques, first: based on conventional x-ray tubes and second: based on synchrotron radiation were compared in this study to detect fine bone structures such as inner trabecular channels. In two red howler monkeys (Alouatta seniculus) femora channel structures were found inside the trabecular bone by both techniques. Only synchrotron-based microtomography was able to detect layers of lower mineral density in the channel walls. The found structures in trabecular bone are normally expected in the Haversian channel walls of the cortical bone. However, the origin of the trabecular channel structure is not fully understood. We found, that synchrotron-based microtomography is a very valuable technique in the research of fine bone structures. Further research should focus on the impact of these findings on the mechanical properties of trabecular bone.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.