The advantages of additive manufacturing for electronic devices have led to the demand of printing functional material in search of a replacement for the conventional subtractive fabrication process. Zinc oxide (ZnO), thanks to its interesting properties for the electronic and photonic applications, has gathered many attentions in the effort to fabricate functional devices additively. Although many potential methods have been proposed, most of them focus on the lowtemperature processing of the printed material to be compatible with the polymer substrate. These low-temperature fabrication processes could establish a high concentration of defects in printed ZnO which significantly affect the performance of the device. In this study, ZnO thin film for UV photodetector application was prepared by inkjet printing of zinc acetate dihydrate solution following by different heat treatment schemes. The effects of annealing to the intrinsic defect of printed ZnO and photoresponse characteristics under UV illumination were investigated. A longer response/decay time and higher photocurrent were observed after the annealing at 350°C for 30 minutes. X-ray photoelectron spectroscopy (XPS) analysis suggests that the reducing of defect concentration, such as oxygen vacancy, and excess oxygen species in printed ZnO is the main mechanism for the variation in photoresponse. The result provides a better understanding on the defect of inkjet-printed ZnO and could be applied in engineering the properties of the printed oxide-based semiconductor.
Three types of micropumps based on TiNi shape memory alloy thin films were designed and fabricated. The TiNi films were prepared on silicon substrate by co-sputtering TiNi target and a separate Ti target at room temperature, and then post annealed at 650°C. The first pump design is based on a single TiNi/Si bimorph membrane structure with inlet and outlet. The second design is based on three layer structures bonded together, with one TiNi/Si active membrane structure and two layers of check valves. The third design is based on two TiNi/SU-8 composite structures, with TiNi as an actuation element, and SU-8/Si as a spring-back structure. The three types of micropump structures were fabricated based on the conventional MEMS processes.
A modified sol-gel process for lead zirconate titanate (PZT) thin film deposition has been presented to overcome the problems of film cracking, short-circuiting and diffusion of PZT to substrate. In the modified sol-gel process, we pattern the pyrolyzed PZT thin film by wet etching before every treatment of post-annealing for crystallization. The modification brings two advantages: film cracking is eliminated due to the reduction of internal stress; PZT diffusion to substrate is avoided due to removing PZT film from the areas without Pt buffer layer before high-temperature post-annealing treatment. The modified sol-gel process is applied to fabrication of piezoelectric cantilever, which includes sputtering and patterning top and bottom electrodes, depositing PZT layer by the modified sol-gel process and releasing cantilever structure by a double side deep reaction ion etching process. After the fabrication, performances of PZT thin film such as hysteresis loop upon polarization and X-ray diffraction pattern are evaluated. Finally, resonant frequency is measured for the fabricated piezoelectric cantilever to verify its self-exited capability for future applications as micro sensors or actuators. These experimental results indicate that the modified sol-gel process for PZT deposition can greatly improve quality and yield rate of the fabrication of piezoelectric devices without causing any adverse effect.
Dynamic testing of micro devices by lead zirconate titanate (PZT) base excitation is presented in this work. Followed with a brief discussion of base excitation principle, the suitability of piezoelectric plate for high bandwidth vibration excitation is revealed. To compare the dynamic testing results based on this method, a 1.21mm (L) by 0.52mm (W) PZT micro cantilever with self-exciting capability is designed and fabricated by a sol-gel process. The fabricated PZT micro cantilever beam is then attached to a 10mm by 10mm by 1 mm piezoelectric plate (PI piezoceramic). A Polytech scanning laser Doppler vibrometer (SLDV) system is used to measure the resonance frequencies and corresponding modal shapes of the micro cantilever beam under the piezoelectric plate base excitation and the PZT micro cantilever self-excitation, respectively. It is found that piezoelectric plate base excitation would be more powerful than self excitation to stimulate the mode shapes of a micro device under testing.
TiNi films were deposited on silicon by co-sputtering TiNi target and a separate Ti target at a temperature of 450°C. Results from differential scanning calorimeter, in-situ X-ray diffraction and curvature measurement revealed clearly martensitic transformation upon heating and cooling. Two types of TiNi/Si optical micromirror structures with a Si mirror cap (20 micron thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, three elbow shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. In the second design, a V-shaped cantilever based on TiNi/Si bimorph beams was used as the actuation mechanism for micromirror. TiNi electrodes were patterned and wet-etched in a solutions of HF:HNO3:H2O (1:1:20) with an etch rate of 0.6 μm/min. The TiNi/Si microbeams were flat at room temperature, and bent up with applying voltage in TiNi electrodes (due to phase transformation and shape memory effect), thus causing the changes in angles of micromirror.
Piezoelectric micro devices based on lead zirconate titanate (PZT) thin film have received considerable attention because of their wide potential in nanotechnology, biosensors and microelectromechanical systems. Thin film cracking, device short-circuiting and substrate surface degrading are commonly encountered problems for PZT micro device fabrication using chemical solution deposition (or CSD) process. These problems often lead to an extreme low yield (<10%) of fabrication and hinder the integration of piezoelectric components into micro-electromechanical systems. In this work, a new manufacturing method for PZT micro devices is developed for the first time to avoid all these problems. Unlike other modified PZT sol-gel processes, in our process pyrolysised PZT thin film is patterned by wet etching before (rather than after) the high temperature sintering treatment. This new process can tremendously reduce the cracking of thin film and eradicate the diffusion of PZT to those substrate surfaces without Pt buffer layer. The effectiveness of the process is proved by 1) the 100% fabrication yield of a number of PZT micro cantilevers, bridges and platforms, 2) the complete elimination of contaminated surfaces by PZT diffusion.
Wireless capsule endoscopy (WCE) is a new technology to evaluate the patient with obscure gastrointestinal bleeding. However, there is still some deficiency existing in the current WCE, for example, lack of ability to biopsy and precisely locate the pathology. This study aimed to prepare and characterize TiNiCu shape memory alloy thin films for developing microgripper for biopsy (tissue sampling and tagging) applications. Ti50Ni41Cu9 thin films were prepared by co-sputtering of TiNi and Cu targets, and their transformation temperatures were slightly above that of human body. Results from differential scanning calorimetry, in-situ X-ray diffraction, curvature and electrical resistance measurement revealed clearly martensitic transformation of the deposited TiNiCu films upon heating and cooling. The biocompatibility of the TiNiCu films in the simulated gastric and intestinal solutions was also studied. Results showed the release of Ni and Cu ions is much less than the toxic level and the film did not lose shape memory effect even after 10-day immersion in the simulated solutions. TiNiCu/Si micro-cantilevers with and without electrodes were fabricated using the conventional micromachining methods and apparent shape memory effect upon heating and cooling was demonstrated.
It has been proved that NiTi shape memory alloy thin film is the best one for micro actuators as compared with the others, e.g., electrostatic, electromagnetic and piezoelectric thin films. If the deposition of NiTi thin films on silicon wafers is carried out at room temperature, the resultant thin films are normally amorphous without shape memory. Subsequent annealing in a high vacuum chamber is required for re-crystallization. In this paper, we present an alternative annealing approach, namely by CO2 laser. After laser annealing, optical microscope, X-ray diffraction (XRD) and atomic force microscope (AFM) were applied to characterize the NiTi thin films. Strong austenite/martensite lattice structures were observed by XRD. The relationship between the surface roughness of the annealed NiTi thin film and temperature was obtained using AFM. The results indicate that the CO2 laser annealed NiTi thin films are with shape memory.
One of the problems faced in the development of micro-gripper is that the actuation displacement or force is too small. In this study, it is aimed to solve this problem with application of shape memory and compliant mechanisms. TiNi film based micro-gripper with compliant structure was design, simulated and fabricated. Some important issues regarding to the preparation of high performance shape memory TiNi films using sputtering methods were discussed.
This paper presents design and development of a haptic interfacing system working with magnetorheological fluids. This system consists of three interchangeable parts: a MR actuator, an interfacing circuitry, and a computer program. The MR actuator is optimally analyzed and designed with finite element simulation, by considering the effects of both magnetic field formation and MR effect formation mechanism. The computer screen is portioned in various segments and the controllable software monitors the attributed values of the voltage to the screen. The computer program, via the parallel port-interfacing circuitry, monitors the current through the electromagnet. Simultaneously, a sensor detects the knob position; the corresponding motion can be observed through a cursor on a computer display. An interactive program is written to demonstrate the working of the haptic interface system. It displays a series of colour bands across the screen, each representing an assigned resistive torque value. As the cursor enters these zones, the corresponding feedback signal is sent to the haptic device.
This paper presents a design of piezoelectric micro-actuator with improved stroke sensitivity and adequate level of lateral resonant frequency for hard disk drive (HDD) application. The improved design employed active piezoelectric elements in push-pull configuration, and two flexural serpentines with inverse-T slits in between them. Instead of adopting conventional design of physical hinge, the two flexural serpentines allow flexural rotations of load beam about an artificial hinge at larger magnification factors. The present design also allows easy adjustment between stroke sensitivity and lateral resonant frequency, which are conflicting with each other, through placement of piezoelectric elements.
TiNiCu films with different Cu contents were prepared by co-sputtering of TiNi and Cu targets using a magnetron sputtering system. Film microstructure, phase transformation behavior and crystallized structures were characterized. The substitution of Ni by Cu in TiNi based films resulted in a dramatic change in martensite structure and film orientation. With the increase of Cu content in the films, both the transformation temperatures and hysteresis decreases significantly from both differential scanning calorimeter (DSC) and X-ray diffraction (XRD) results. However, from both DSC and curvature measurement results, the specific heat and the maximum recovery stress generated during martensite transformation decreases.
NiTi shape memory alloy thin film has been proved to be the best micro actuation mechanism due to the largest displacement and the highest actuation force as compared with other mechanisms. The combination of laser and traditional MEMS techniques might provide a better and cheaper solution for the fabrication of micro devices. In this paper, we present some preliminary results of cutting and annealing of NiTi shape memory alloy thin films using different types of lasers.
Shape memory alloys (SMAs) offer a unique combination of novel properties, which promise some exciting application potentials in micor-electro-mechanical systems (MEMS), medical implants, intelligent materials and structural systems. In this study, TiNi films with different compositions were successfully prepared by mix sputtering of TiNi and Ti targets using a magnetron sputtering equipment. Microstructure and crystalline phases were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Residual stress and phase transformation properties of the TiNi films were investigated using curvature measurement and differential scanning calorimeter (DSC). Effects of the deposition parameters on the film composition, phase transformation and shape-memory effects were analyzed. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNi films. Measurement of substrate curvatures as a function of temperature gave the information of crystallization and transformation temperatures, recoverable stress, thermal stress, intrinsic stress and the martensitic yield stress for the two types of SMA films. By depositing TiNi films on the bulk micromachined Si cantilever structures, micro-beams exhibiting a good shape-memory effect were obtained.
In this paper, diamond microstructures were patterned over silicon/silicon dioxide substrate using the processes combined with bulk or surface micromachining, selective growth of diamond and plasma etching technique. Polycrystalline diamond films were prepared using microwave plasma enhanced chemical vapor deposition (MW-PECVD) and a gas mixture of hydrogen and methane. Two types of techniques for precise patterning of diamond microstructures were investigated in this paper. The first one was to selectively grow diamond films in the desired region by pre-depositing a Pt interlayer on silicon dioxide layer. The second one was to selectively etch the deposited diamond film in oxygen/argon plasma under an Al mask. Different microstructures, for example, microgear, microrotor, comb drive structure, etc. were successfully fabricated.
Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super- elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti55Ni45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the freestanding film was heated and cooled, a two-way shape memory effect can be clearly observed.
In this paper, viscoelastic properties of MR fluids under oscillatory shear were experimentally studied using a rheometer with parallel-plate geometry. The experiments were conducted with amplitude sweep mode and frequency sweep mode. For the amplitude sweep mode, the driving frequency is fixed at a given value of (omega) rad/s and the strain amplitude, (gamma) 0, is swept from 0.01% to 100$; For the frequency sweep mode, the strain amplitude is fixed at a certain strain, (gamma) 0, and driving frequency is swept from 1 to 11 Hz. Consequently, the effects of strain amplitude, frequency, magnetic field strength, and temperature on the viscoelastic properties of MR fluids were investigated. MR fluid behaves as a linear viscoelastic body for sufficiently small strain amplitude ((gamma) 0<EQ(gamma) lin), while nonlinear viscoelastic behavior is observed for high strain ranges ((gamma) 0>(gamma) lin). At small strain amplitudes, the storage modulus and the loss modulus are independent of strain amplitude. At high strain amplitudes, the storage modulus is independent of the frequency and approaches plateau values at low frequencies. With increasing frequency, the storage modulus shows a decreasing trend before increasing again. The loss modulus varies slightly with frequency. MR fluid shows elastic-dominated properties in a magnetic field. Both the storage modulus and the loss modulus increase significantly with increasing field of strength. The temperature dependence of viscoelastic properties is also discussed. For the experimental temperature range of 20 degree(s)C to 60 degree(s)C, the storage modulus shows a slightly decreasing trend with temperature.
Electrostrictive actuators are a relatively new development in the field of smart material actuators. However, a major deficiency of electrostrictive actuators is their limitation of motion accuracy due to inherent non-linearity and hysteresis. This paper presents a new iterative learning control approach to improve the positioning/tracking accuracy of electrostrictive actuators. In this scheme, the iterative gain is not fixed but variable according to previous trial result and the nominal input/output relationship of the electrostrictive actuator. The convergence to the desired position/trajectory is theoretically proved. The effectiveness ofthis control scheme is experimentally demonstrated through actual positioning and tracking control ofa stacked electrostrictive actuator. The results show that using this variable gain iterative learning control scheme, not only can the stability of precision positioning be obviously improved, but also precise and non-delay tracking can be achieved.
Diamond microstructures were patterned over silicon/silicon dioxide substrate using the processes combined with bulk or surface micromachining, selective growth of diamond and plasma etching technique. Polycrystalline diamond films were prepared using microwave plasma enhanced chemical vapor deposition and a gas mixture of hydrogen and methane. (111)- and (100)-oriented diamond films were synthesized and smooth (100)-textured thin films were successfully deposited on silicon structures, such as trenches, corners, edges, forming a good heat-diffusing and insulating layer as well as a protective wear-resistant surface. Two types of techniques for precise patterning of diamond microstructures were investigated in this paper. The first one was to selectively grow diamond films in the desired region by pre- depositing a Pt interlayer on silicon dioxide layer. The second one was to selectively etch the deposited diamond film by oxygen/argon plasma under an Al mask. Different microstructures, for example, diamond membrane, microgear, microrotor, comb drive structure, etc. were successfully fabricated.
Thin film shape-memory alloys have been recognized as a promising and high performance material in the field of microelectromechanical systems applications. In this investigation, TiNi films were prepared by sputtering Ti and Ni target in argon gas using a magnetron sputtering system. Chemical composition, crystallography, microstructure and phase transformation behaviors of the deposited TiNi film were studied. Differential scanning calorimeter results showed that a two-stage transformation occurs in a sequence of monoclinic martensitic phase to rhombohedral phase, then to B2 phase upon heating, and vice versa on cooling. X-ray diffraction analysis also revealed the crystalline structure changes with the change of the temperatures. Nano- indentation reveals the elastic modulus of the film is about 5.11 GPa and the film intrinsic hardness is 2.84 +/- 0.5 GPa. By depositing TiNi films on the bulk micromachined Si cantilever structures, we obtained micro-grippers exhibiting a good shape-memory effect.
Silicon micromachining technology provides a cheap, massproduceable means to manufacture simple, low power consumption integrated metal oxide thin film gas sensors for industrial, environmental and medical purposes. Small size, low power consumption, low noise, low manufacturing cost, fast response time, long term stability under harsh conditions such as high temperature and aggressive gas atmospheres, as well as high selectivity are the basic requirements for the new micromachined gas sensor developed in this paper. The developed semiconductor gas sensor can be fabricated by the techniques that are compatible with IC fabrication. According the results of thermal simulation of the present gas sensor, the thermal isolation structure can work effectively. Uniform temperature distribution can be obtained while heating the suspended membrane. The supporting bridges can resist the heat transfer from membrane to silicon frame effectively. In the meantime, the heating response is very fast, and the power consumption is below 10 mW at the operating temperature of 300 centigrade.
Displacement-amplifying mechanisms can be systematically designed using topology optimization. Due to the special need of large displacement amplification for piezoelectric stacked actuators, the objective function should be formulated properly. Among output stroke, magnification factor and work ratio, magnification factor better describes the design goal of displacement amplifier and is thus adopted in this work. To depict the dynamic operation of displacement amplifier, undamped harmonic response is used in the formulation. The design problem is thus posed as a material distribution problem, which maximize the dynamic magnification factor by varying the thickness of 2-D domain. Plane stress solid is assumed for the design domain. Stiffness of the actuator and the workpiece is included in the analysis. The design problem is solved by Method of Moving Asymptotes or MMA. To show the viability of this design methodology, two examples of magnification mechanism for printer head driven at different excitation frequency are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.