A numerical model of the sensitivity of long period gratings fabricated by electric-arc in photonic crystal fibres to strain,
temperature and refractive index is proposed and evaluated by comparison to the experimental results. It is shown to be
superior to the commonly used semi-analytical method. The generalized modelling procedure is thoroughly explained in
order to facilitate its application to a wide range of long period gratings in different types of fibres.
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV
laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive
temperatures in excess of 800 °C, however the inscription process can induce considerable birefringence within the
device. Annealing studies have been carried out showing that below 600 °C, all three grating types show a blue shift in
their room temperature resonance wavelengths following cyclic heating, while above 600 °C, the UV and arc induced
LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown
to considerably reduce the birefringence induced by the fs inscription process.
The annealing properties of Type IA Bragg gratings are investigated and compared with Type I and Type IIA Bragg gratings. The transmission properties (mean and modulated wavelength components) of gratings held at predetermined temperatures are recorded from which decay characteristics are inferred. Our data show critical results concerning the high temperature stability of Type IA gratings, as they undergo a drastic initial decay at 100°C, with a consequent mean index change that is severely reduced at this temperature However, the modulated index change of IA gratings remains stable at lower annealing temperatures of 80°C, and the mean index change decays at a comparable rate to Type I gratings at 80°C. Extending this work to include the thermal decay of Type IA gratings inscribed under strain shows that the application of strain quite dramatically transforms the temperature characteristics of the Type IA grating, modifying the temperature coefficient and annealing curves, with the grating showing a remarkable improvement in high temperature stability, leading to a robust grating that can survive temperatures exceeding 180°C. Under conditions of inscription under strain it is found that the temperature coefficient increases, but is maintained at a value considerably different to the Type I grating. Therefore, the combination of Type I and IA (strained) gratings make it possible to decouple temperature and strain over larger temperature excursions.
In this paper we report on investigations of some of the factors that have a bearing on the reliability and repeatability of polymer fibre Bragg gratings. The main issues discussed are the fibre preform composition, the fibre drawing conditions and the thermal history of the fibre grating.
We describe recent research into devices based on fibre Bragg gratings in polymer optical fibre. Firstly, we report on the inscription of gratings in a variety of microstructured polymer optical fibre: single mode, few moded and multimoded, as well as fibre doped with trans-4-stilbenmethanol. Secondly, we describe research into an electrically tuneable filter using a metallic coating on a polymer fibre Bragg grating. Finally we present initial results from attempts to produce more complex grating structures in polymer fibre: a Fabry-Perot cavity and a phase-shifted grating.
KEYWORDS: Copper, Cladding, Refractive index, Signal attenuation, Waveguides, Fiber coatings, Metals, Finite element methods, Modeling, Control systems
A set of long period grating devices have been fabricated in photosensitive single mode fibre coated with a series of copper rings (period of 380 μm, 50% duty cycle and length of 4cm). The long period gratings were inscribed with a uniform UV-laser exposure across the entire length of the copper ring patterned coating. The devices ranged in copper thickness from 0.5 μm to 1.5 μm. In addition, a control long period grating was fabricated in the same type of fibre with the same period for comparison. The refractive index and temperature spectral sensitivity of these devices were investigated and it was found that the index and temperature sensitivity is a function of the thickness of the copper rings, as supported by theoretical modelling. Furthermore, the index sensitivity of these devices in the 1.333 index region is greater than the control long period grating. The patterned 0.5 μm coated long period grating gave a sensitivity of Δλ/Δn =-74 nm leading to a resolution of 1.4x10-3 compared to the control which had a sensitivity of Δλ/Δn =
-32 nm with a resolution of 3.2x10-3 in the index region of 1.320 to 1.380 (aqueous solution regime). This demonstrates a two fold increase in the sensitivity. This novel fibre long period grating device shows potential for increasing the resolution of measurements of the index of aqueous solutions.
Long period gratings in two types of photonic crystal fibre have been studied. The gratings display negligible temperature sensitivity but useful sensitivity to other measurands. Theoretical modelling suggests that unusual phase matching conditions apply.
Long period gratings (LPGs) were written into a D-shaped optical fibre, which has an elliptical core with a W-shaped refractive index profile. The LPG's attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15nm between the two orthogonal polarisation states. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature, surrounding refractive index, and directional bending. These LPG devices produced blue and red wavelength shifts of the stop-bands due to bending in different directions. The measured spectral sensitivities to curvatures, dλ/dR, ranged from -3.56nm m to +6.51nm m. The results obtained with these LPGs suggest that this type of fibre may be useful as a shape/bend sensor. It was also demonstrated that the neighbouring bands could be used to discriminate between temperature and bending and that overlapping orthogonal polarisation attenuation bands can be used to minimise error associated with polarisation.
Presented are long-period gratings (LPGs) fabricated in pure silica photonic crystal fibre (PCF) using an electric arc. Two different varieties of PCF have been investigated, an endlessly single mode PCF and a large-mode area PCF. The LPGs have been characterised for their sensitivity to a variety of external measurands. The LPGs in both fibres have been found to have negligible temperature sensitivity whilst exhibiting good sensitivity to bending and strain.
A long period grating (LPG) fabricated in progressive three-layered (PTL) fibre is described. The grating with a period of 391μm, had dual attenuation bands associated with a particular cladding mode. The dual attenuation bands have been experimentally characterised for their spectral sensitivity to bending, which resulted in the highest sensitivity to bending seen for this particular fibre and temperature. The spectral characteristics of the fibre have been modelled giving good agreement to the experimental data as well as showing that the attenuation bands are both associated with the second
order HE/EH2,n cladding mode.
In this paper we review the sensing features of long period Bragg gratings and report on studies aimed at optimizing the sensitivities to various measurands by using different fiber geometries.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.