Light control-light characteristics of a micro fiber (MF) coated with tungsten disulfide (WS2) nanosheets is demonstrated in this paper. A device with WS2-coated MF has been fabricated, and the transmitted optical powers of the device are measured with 405 and 660 nm pump lasers. By tuning the pump lasers, we achieve the all light controllable sensing of WS2-coated MF over a broadband wavelength range from 1520 to 1620 nm, offering competitive sensities of 0.238 and 0.136 dB/mW for 405 and 660 nm pump lasers, respectively. In addition, The rise and fall times of the transient response to pump lasers are also measured. For the 405 nm laser, the rise and fall times of the transient response are 0.32s and 0.42s, respectively. For 660 nm laser, the response times toward the presence (removal) of the pump light transient response are 0.28s and 0.37s, respectively. Experimental results indicate that the device integrated with WS2 could hold promising potentials in photoelectric and photonic applications.
We propose the electro-optic mode deflection devices based on annealed proton exchange (APE) waveguides in lithium niobate with microstructured electrodes. Two mode deflection devices with right-triangle-shaped electrodes (Device A) and isosceles-triangle-shaped electrodes (Device B) are investigated. Taking advantage of the refractive index prism array formed when applying an external voltage to the electrodes, the mode can be deflected. Beam smoothing can be achieved by applying alternating voltages. A∼1.28 μm beam deflection is obtained by applying a voltage (20 V) for Device A. For Device B, a 3.52 μm beam deflection is obtained by applying a -15 V voltage to the electrodes. Device B has a horn-shaped input waveguide which ensures that the output is a quasi-single mode. The mode quality of the deflection beam is also quantified by the CMOS camera. Smoothing the non-uniform density distribution of light beam is confirmed by averaging over 69 images taken by the CMOS camera with alternating voltage. These electro-optic mode deflection devices have potential applications in electro-optic sampling, high-speed optical switch, and beam smoothing of a high-power laser.
Optical fibers have long been the backbone of modern communication system. One way of extending the capability of optical fibers is to thin down the core sizes as microfiber which facilitates light-matter interaction through evanescent light. Among different microfiber based structure, the microfiber knot resonator (MKR) is a resonant structure which finds applications in lasing, filtering and optical switching [1-2]. Particularly, when the MKR structure is combined with functional two-dimensional materials, a large panel of devices can be achieved via the investigation of variations in resonance properties.
Here, a layered metal dichalcogenide semiconductor tin disulfide (SnS2), characterized with high intrinsic electron mobility and strong absorption in the visible light regime [3], is chosen to be coated onto MKR. The all-optical control of light functionality is demonstrated in MKR with SnS2 structure where the signal light power is controlled by the external violet pump power via the absorption property of SnS2. The device fabrication, characterization and obtained experimental results will be presented in the talk.
We demonstrated strain sensing of a microfiber with a microarched transition region, which was fabricated by flame heated tapering. Due to multimode interference of different propagation modes of microfiber, two main transmission dips were observed at 1215.0 and 1469.8 nm. Enhanced by the microarched transition region, the depth of the dip was up to 19 dB at 1215.0 nm. The position of the dip red-shifted while the axial strain changed from 0 to 1166.2 μϵ. The axial strain sensitivity was up to 56.6 pm/μϵ, which was one order of magnitude higher than that of the traditional optical strain sensor based on microfiber or fiber Bragg grating. The linear correlation coefficient was 98.21%. This kind of microfiber with a microarched transition region can be widely used in various physical, chemical, and biological sensing and detection fields.
We demonstrated temperature sensing of a side-polished fiber with polymer nanoporous film cladding, which was constructed by dehydrating dichromate gelatin film on the polished surface. Due to intermodal interference of core mode and cladding mode, two main transmission valleys were observed at 1219.2 and 1373.2 nm. The modulation amplitudes are ∼8 and 12 dB, respectively. These two transmission valleys show significant sensitivity to the temperature. At the wavelength of 1373.2 nm, the position of transmission valley blueshifted 114 nm while the temperature changes from 30°C to 90°C, and the sensitivity of temperature was up to 1.92 nm/°C. The linear correlation coefficient was 98.67%. The temperature sensing characteristics of nanoporous cladding fiber was successfully demonstrated, and it shows a high potential in photonics applications.
We established a theoretical model for a single knot-ring resonator and investigated the transmission spectrum by Jones matrix. The numerical results show that two orthogonal polarization modes of knot-ring, which are originally resonated at the same wavelength, will split into two resonant modes with different wavelengths. The mode splitting is due to the coupling between the two orthogonal polarization modes in the knot-ring when the twisted angle of the twist coupler is not exactly equal to 2mπ (m is an integer). It is also found that the separation of the mode splitting is linearly proportional to the deviation angle δθ with a high correlation coefficient of 99.6% and a slope of 3.17 nm/rad. Furthermore, a transparency phenomenon analogous to coupled-resonator-induced transparency was also predicted by the model. These findings may have potential applications in lasers and sensors.
Because of high surface-to-volume ratio, few layers MoS2 material as a kind of 2D materials has been attracted more attention nowadays to be used for photonics devices. We investigated the performance of few-layer MoS2 when it is covered on a side polished fiber (SPF) to sense relative humidity (RH) of environments. The SPF was made by wheel side polishing method. The few layers MoS2 was deposited on the side polished surface to be a sensing material. As the environmental humidity changes, the output optical power of the all fiber sensor will change due to the interaction between evanescent field of fiber and MoS2 material. The change of output power of fiber sensor can reach 16.67dB in the relative humidity range of 40-85%. Experiments using the fiber sensor on human breathing have been made and the respondence has achieved. The experiments showed that the fiber sensor can be used in medical instruments. Key words: fiber sensor, side-polished fiber, humidity sensing, 2D material, MoS2.
This study reports on the development and testing of a cost- and time-effective means to optimize a double-sided hemispherical patterned sapphire substrate (PSS) for highly efficient flip-chip GaN-based light-emitting diodes (LEDs). A simulation is conducted to study how light extraction efficiency (LEE) changed as a function of alteration in the parameters of the unit hemisphere for LEDs that are fabricated on a hemispherical PSS. Results show that the LEE of LED flip chip could be enhanced with the optimized hemispherical PSS by over 0.508 and is ∼115.3% higher than that of flip-chip LEDs with non-PSS. This study confirms the high efficiency and excellent capability of the optimized hemispherical PSS pattern to improve LED efficacy.
The multilayer ridge metal/multilayer-dielectric gratings (MMDGs) for pulse compressors show high efficiency, broad bandwidths, large fabrication tolerances and high laser-induced damage thresholds. The diffraction efficiency, bandwidth, and near-field distribution of the multilayer structure ridge MMDG are theoretically investigated. Simulation results show that the film structure of the grating ridge has a great influence on the bandwidth and near-field distribution. The maximum electric field is located in the high-index layer of the grating ridge with high -1st diffraction efficiency. As the thickness of the high-index layer decreases, the maximum electric field moves to the low-index layer of the grating ridge with. Base on the results, the sandwich ridge MMDG is an ideal pulse compression grating for chirped pulse amplification systems.
Metal multilayer dielectric gratings (MMDGs) for pulse compressors used in high-energy laser systems should enable
high efficiency, as well as provide broad bandwidths and high laser-induced damage thresholds. The non-uniform optical
near-field distribution of MMDGs is an important factor that limits damage resistance capabilities. The efficiency and
electric field distributions of MMDGs with a corrugated SiO2 layer and operated at 800 nm are analyzed by rigorous
coupled-wave analysis. The maximum electric field in the grating ridge, match layer, and metal layer decreases with
increasing grating diffraction efficiency. High efficiency and a low electric field are obtained with a 90° slope angle in
the grating ridge. The bandwidth and maximum electric field in the metal layer decrease with increasing high- and
low-index material pairs, and the maximum electric fields in the grating ridge and match layer initially decrease and then
increase. The peak electric field in the grating is optimized with a merit function; the optimization covers the
enhancement of diffraction efficiency, bandwidth, and reduction of electric field. The bandwidth of the optimized
MMDGs is 160 nm with a diffraction efficiency exceeding 90%. The largest electric field is modulated in air to obtain a
low electric field and high laser-induced damage threshold.
In this paper, porous nanostructures on BK7 glass were manufactured by chemical treatment in order to obtain antireflection (AR) components with improved laser damage resistance. The damage-resistant properties of the samples with nearly 100% transmittances at three pulsed laser wavelength were investigated. The damage tests showed that the BK7 glass with AR nanostructures can achieve the LIDTs of 58J/cm2, 20 J/cm2 and 12 J/cm2 under the irradiation of 12ns 1064nm pulses, 10ns 532nm pulses and 8ns 355nm pulses, respectively. These values are much higher than those of AR coated glasses, but are almost the same level of un-etched substrate. The effect of structural properties on electric field distribution of porous surface was investigated by a three-dimensional (3D) finite difference time-domain (FDTD) model. The simulation results and the morphology of damage site on porous glass are compared to those of un-etched surface, and are discussed to reveal the possible damage mechanism. Finally, some possible solutions to improve the LIDT are proposed.
The multilayer dielectrics (MLDs) for broad bandwidth 800nm pulse compression gratings were
fabricated with optimized design by electron beam evaporation using three different kinds of materials
(Ta2O5/SiO2/HfO2), which had more than 99% reflectance with bandwidth larger than 160nm around
the center wavelength of 800 nm and high transmission at the exposure wavelength of 413nm.
Laser-induced damage behaviors of the mirrors were investigated. It was found that the laser-induced
damage threshold (LIDT) of the samples could reach 1.0J/cm2 and 2.0J/cm2 in the normal beam (57
degrees, TE mode) at pulse duration of 50fs and 120fs, respectively. The depth information of the
damage sites at these two cases was explored by atomic force microscope (AFM). The reason of the
sample having so high LIDT was also discussed in this paper. The MLDs provide a solid base for the
high laser threshold 800nm pulse compression gratings and may open a new way for broad bandwidth
800nm reflectance coatings used in the ultrashort pulse laser system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.