In vivo two-photon microscopy is an advantageous technique for observing living mouse brains at high spatial resolutions. We previously used a 1064 nm high-power light source based on an electrically controllable gain-switched laser diode (maximum power: 4 W, repetition rate: 10 MHz, pulse width: 7.5 picoseconds) and successfully visualized EYFP expressing neurons at deeper regions in H-line mouse brains under living conditions. However, severe damages were frequently observed when the laser power after the objective lens was over 600 mW, suggesting that a higher average power might not be suitable for visualizing neural structures and functions at deep regions. To increase fluorescent signals as a strategy to avoid such invasions, here, we evaluated the effects of the excitation laser parameters such as the repetition rate (5 - 10 MHz), or the peak power, at the moderate average powers (10 - 500 mW), by taking the advantage that this electrically controllable light source could be used to change the repetition rate independently from the average power or the pulse width. The fluorescent signals of EYFP at layer V of the cerebral cortex were increased by approximately twofold when the repetition rate was decreased from 10 MHz to 5 MHz at the same average power. We also confirmed similar effects in the EYFP solution (335 μM) and fixed brain slices. These results suggest that in vivo two-photon microscopic imaging might be improved by increasing the peak power at the same average power while avoiding the severe damages in living brains.
We present a picosecond laser source based on a gain-switched laser diode (GS-LD) that can be applied to stimulated Raman scattering (SRS) microscopy. A 1.06-μm GS-LD was used to generate 14-ps pulses at a repetition rate of 38 MHz. The GS-LD was driven by 200-ps electrical pulses, which were triggered through a toggle flip-flop (T-FF). As a result, the GS-LD pulses were subharmonically synchronized to Ti:sapphire laser (TSL) pulses at a repetition rate of 76 MHz. We investigated the timing jitter of GS-LD pulses and found it to be less than 2.5 ps. We also show that the trigger delay can be less sensitive to the optical power of TSL pulses by controlling the threshold voltage of the T-FF. As a result, GS-LD pulses sufficiently overlapped with TSL pulses even when we scanned the wavelength of the TSL pulses. We demonstrate the SRS imaging of HeLa cells with GS-LD pulses and TSL pulses, proving that GS-LD is readily applicable to SRS microscopy as a compact and stable pulse source.
We present optical pulse generation with 100 W peak power, 3 ps temporal duration, and 1 GHz repetition from a
GaInN master oscillator power amplifier (MOPA). An external cavity GaInN laser diode is passively mode-locked to
generate 4 W peak power optical pulses as a master oscillator, and a semiconductor optical amplifier (SOA) effectively
amplified these to a high peak power of more than 100 W. Two major factors that contributed to effective amplification
of optical pulses were the generation of clean optical pulses without sub-pulse components by the GaInN mode-locked
laser diode and suppression of amplified spontaneous emission in the SOA. This novel high-peak-power pulse source is
used to induce multi-photon absorption to create sub-micrometer recording marks in a bulk plastic recording media. The
realization of an all-semiconductor pulse source is a significant breakthrough towards a practical 3D optical data storage
system.
We have developed a multi-kilowatt peak power 1-μm optical pulse source for two-photon microscopy. Utilizing an
external-cavity hybrid mode-locked semiconductor laser, we were able to generate picosecond optical pulses at a
500-MHz repetition rate. With a semiconductor optical amplifier driven by synchronized electronic gating pulses, the optical
pulse repetition rate was sub-harmonically extracted at 1-100 MHz. At a 10-MHz repetition rate, optical pulses were then
amplified to a peak power of greater than 2 kW with a two-stage
Yb-doped fiber amplifier. Using this light source, we
successfully obtained clear two-photon images of mouse brain neurons expressing green fluorescent proteins.
We developed a novel scheme for two-photon fluorescence bioimaging. We generated supercontinuum (SC) light at wavelengths of 600 to 1200 nm with 774-nm light pulses from a compact turn-key semiconductor laser picosecond light pulse source that we developed. The supercontinuum light was sliced at around 1030- and 920-nm wavelengths and was amplified to kW-peak-power level using laboratory-made low-nonlinear-effects optical fiber amplifiers. We successfully demonstrated two-photon fluorescence bioimaging of mouse brain neurons containing green fluorescent protein (GFP).
We present theoretical and experimental results of surface-emitted THz-wave difference frequency generation (DFG) in 2 dimensional (D) periodically poled lithium niobate (PPLN) crystal. The two orthogonal periodic structures compensate the phase mismatch in two mutually perpendicular directions of the optical and THz-wave propagation. The tunable 1.5 - 1.8 THz wave generation with impulse power of 0.1 mW and repetition rate 1 MHz is obtained. The opportunity of the power enhancement using an interference of THz fields generated by the both forward and backward propagating optical waves is investigated. The power and radiation pattern of generated of THz-wave are calculated in far-field approximation. Analysis of THz-wave DFG in 2D PPLN and its correlation with experimental data is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.