We present a deep learning-enabled holographic polarization microscope that only requires one polarization state to image/quantify birefringent specimen. This framework reconstructs quantitative birefringence retardance and orientation images from the amplitude/phase information obtained using a lensless holographic microscope with a pair of polarizer and analyzer. We tested this technique with various birefringent samples including monosodium urate and triamcinolone acetonide crystals to demonstrate that the deep network can accurately reconstruct the retardance and orientation image channels. This method has a simple optical design and presents a large field-of-view (>20-30mm2), which might broaden the access to advanced polarization microscopy techniques in low-resource-settings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.