MBE and MOVPE growths of InP-based extended wavelength and GaSb-based IR emitter and detector structures have progressed to production mode. These photonics device structures are typically grown using large format, multi wafer MBE and MOCVD tools and on large diameter substrates (100 to 150 mm). In this work, material characterization data of advanced InP- and GaSb based epitaxial structures will be shown. Multi point measurements showing cross-wafer and cross-platen uniformity will also be shared. Finally, detailed analysis of run-to-run epiwafer data will be presented to demonstrate the manufacturability of our production epitaxial process for these advanced photonics device structures.
We report the experimental results of a 40-stage InP-based quantum cascade laser (QCL) structure grown on a 6-inch GaAs substrate with metamorphic buffer (M-buffer). The laser structure’s strain-balanced active region was composed of Al0.78In0.22As/In0.73Ga0.27As and an all-InP, 8 μm-thick waveguide. The wafer was processed into ridge-waveguide chips (3mm x 30 μm devices) with lateral current injection scheme. Devices with high reflection coating delivered power in excess of 200 mW of total peak power at 78K, with lasing observed up to 230K. Preliminary reliability testing at maximum power showed no sign of performance degradation after 200 minutes of runtime. Measured characteristic temperatures of T0 ≈ 460 K and T1 ≈ 210 K describes the temperature dependence for threshold current and slope efficiency, respectively, in the range from 78K to 230K. Partial high reflection coating was used on the front facet to extend the lasing range up to 303K.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.