This paper presents the first chip-scale demonstration of an intra-chip free-space optical interconnect (FSOI) we recently
proposed. This interconnect system uses point-to-point free-space optical links to construct an all-to-all intra-chip communication
network. Unlike other electrical and waveguide-based optical interconnect systems, FSOI exhibits low latency,
high energy efficiency, and large bandwidth density with little degradation for long distance transmission, and hence can
significantly improve the performance of future many-core chips. A 1x1-cm2 chip prototype is fabricated on a germanium
substrate with integrated photodetectors. A commercial 850-nm GaAs vertical-cavity-surface-emitting-laser (VCSEL) and
fabricated fused silica micro-lenses are 3-D integrated on top of the germanium substrate. At a 1.4-cm distance, the measured
optical transmission loss is 5 dB and crosstalk is less than -20 dB. The electrical-to-electrical bandwidth is 3.3 GHz,
limited by the VCSEL.
This paper presents a novel design concept for spintronic nanoelectronics that emphasizes a seamless integration
of spin-based memory and logic circuits. The building blocks are magneto-logic gates based on a hybrid
graphene/ferromagnet material system. We use network search engines as a technology demonstration vehicle
and present a spin-based circuit design with smaller area, faster speed, and lower energy consumption than the
state-of-the-art CMOS counterparts. This design can also be applied in applications such as data compression,
coding and image recognition. In the proposed scheme, over 100 spin-based logic operations are carried
out before any need for a spin-charge conversion. Consequently, supporting CMOS electronics requires little
power consumption. The spintronic-CMOS integrated system can be implemented on a single 3-D chip. These
nonvolatile logic circuits hold potential for a paradigm shift in computing applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.