Light exerts non-visual effects on a wide range of biological functions and behavior apart from the visual effect. Light can regulate human circadian rhythms, like the secretion of melatonin and cortisol. Light also has influence on body’s physiological parameters, such as blood pressure, heart rate and body temperature. However, human cognitive performance, alertness and mood under different lighting conditions have not been considered thoroughly especially for the complicated visual task like surgical operating procedure. In this paper, an experiment was conducted to investigate the cognition, alertness and mood of healthy participants in a simulated operating room (OR) in the hospital. A LED surgical lamp was used as the light source, which is mixed by three color LEDs (amber, green and blue). The surgical lamp is flexible on both spectrum and intensity. Exposed to different light settings, which are varied from color temperature and luminance, participants were asked to take psychomotor vigilance task (PVT) for alertness measurement, alphabet test for cognitive performance measurement, positive and negative affect schedule (PANAS) for mood measurement. The result showed the participants’ cognitive performance, alertness and mood are related to the color temperature and luminance of the LED light. This research will have a guidance for the surgical lighting environment, which can not only enhance doctors’ efficiency during the operations, but also create a positive and peaceful surgical lighting environment.
Optical tweezers is an increasingly important technique for controlling and probing particles since computer-generated holography (CGH) make steering of multiple traps individually possible. In addition, the dark focus of orbital angular momentum (OAM) beams is increasingly widely used in trapping reflecting, absorbing or low-dielectric-constant objects. In this paper, we present a method to create arbitrary three-dimensional configurations of orbital angular momentum modes to achieve manipulation of micro-particles. Compared with conventional optical tweezers, this method can steer mixed arrays of traps individually and randomly by producing three-dimensional structure of optical vortices. These optical traps we used was formed by a CGH generated complex phase mask, which has three components: 1) a helical phase mask to change the transverse phase structure, 2) a blazed grating phase mask to vary the propagation direction of the incident beams, and 3) a modulated grating phase mask to divert the focal plane from the planar configurations. The latter one ensure that we can form threedimensional trapping patterns. The trap patterns can also be generated dynamically by holographic display system based on liquid crystal on silicon (LCoS). The experimental results show that the refresh frequency of reconfiguring achieves 24fps. Our method is effective and promise an exciting new opportunity to be used as a valuable non-contact manipulation tool in various applications.
Surgical light is important for helping the surgeon easily identify specific tissues during an operation. We propose a spectral reflectance comparison model to optimize the light-emitting diode light spectrum in the operating room. An entropy evaluation method, meant specifically for surgical situations, was developed to evaluate images of biological samples. White light was mixed to achieve an optimal spectrum, and images of different tissues under the light were captured and analyzed. Results showed that images obtained with light with an optimal spectrum had a higher contrast than those obtained with a commercial white light of different color temperatures. Optimized surgical light obtained using this simple and effective method could replace the traditional surgical illumination systems.
Light-emitting diode (LED) is the neotype surgical lighting device as an inexpensive and color-variable illumination. A methodology was designed to value the quality of surgical lighting and used to develop an operation lamp with LEDs enhancing the biological contrast. We assembled a modular array of Phillips LEDs as illumination. In the initial experiment, images of porcine heart were carried out in several LED environments and analyzed quantitatively to assess the function of these LEDs in contrast enhancement. Then we measured the reflectance spectrums of blood, fat and other tissues to obtain the spectral comparison. Based on the result, new illuminations with spectral components which differ most in the comparison was developed. Meanwhile, a new evaluation function combining the entropy analysis and brightness contrast was also built to value the quality of these illuminations. Experiments showed biological features are more visible with treated LED illuminations than the broadband lamps. Thus, the synthesis of LED lighting spectra could be adjusted to provide significant tissue identification. Therefore, we believe the new methodology will contribute to the manufacture of high efficient medical illuminations and act the positive role in coming surgical lighting fields.
The observed color of an object is influenced by the spectral distribution of an illuminant impinging upon it. Here we explored a method to obtain optimal illumination spectra for local contrast enhancement based on human vision. First, multispectral imaging was used to measure the spectral reflectance of the sample and color segmentation was used to extract its color features. Then we obtained the target-specific optimal illumination by maximizing the color differences of mutual colors in our sample tissue. To verify the effectiveness of this method, simulated images under the optimized illumination were compared to illumination with the standard illuminant D65 and a cool white light-emitting diode (5500 K). Results showed that the sample under the optimized illumination had a better perceptual color contrast.
KEYWORDS: Light emitting diodes, Light sources, LED lighting, Data conversion, Light, Control systems, Light sources and illumination, Detection and tracking algorithms, LED displays, Data storage
This study focuses on the theory, construction and the performance measurement of a spectral-tunable LED light source. The light source is mainly combined by the LED illumination body, the spectral matching module as well as LED control driver module. The LED illumination includes thousands of high power LEDs across the whole visible spectral region. The received iterated data are allocated via LED data distribution card to drive LEDs on the illumination body, and precisely control the current of each LED by PWM(Pulse Width Module), to achieve 256 and above gray scale illumination. Through the study, the spectral-tunable light source with size of 3 by 1.5 square meter including 1700 LEDs has been constructed and the optical performance has been tested. The white light with color temperature of 5000K is taken as the simulation target. The results show that the optical performance such as luminous flux and color temperature are gradually stabilized, which differ due to the LED type. The spectrum distribution is not so accurate to the target one. And some methods to minimize the difference are discussed as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.