KEYWORDS: 3D modeling, 3D acquisition, Signal to noise ratio, Positron emission tomography, Performance modeling, 3D image processing, Smoothing, Data modeling, Target detection, Optical spheres
This work presents initial results of comparisons between planar and volumetric observer detection task performances for both human and model observers. Positron Emission Tomography (PET) imaging acquires and reconstructs tomographic images as contiguous volumetric (3D) images. Consequently physicians typically interpret these images by
searching the image volume using linked orthogonal planar images in the three standard orientations (transverse, sagittal, and coronal). Most of observer studies, however, have typically used planar images for evaluation. For human observer ROC studies, an observer scoring tool, similar to the display tool being used in clinical PET oncology imaging, has been developed. For model observer studies the non-prewhitening matched filter (NPWMF) and the channelized Hotelling
observer (CHO) were used to compute detectabilities as figures-of-merit for class separations. For the volumetric (3D)model observers, the entire image volume is used with appropriate 3D templates. For the planar (2D) model observers the transaxial plane centered on the target sphere is extracted and analyzed using 2D templates. Multiple realizations were generated using a non-Monte Carlo analytic simulator for feasible amount of simulation time and statistically
accurate noise properties. For comparisons, the correlations between each model observer and human observer performance are computed. The result showed that 3D model observers have a higher correlation with human observers than 2D observers do when axial smoothing is not applied. With axial smoothing, however, the correlation of 2D model
observers in general increased to the level of 3D model observer correlations with the human observer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.