In the search for life in our galaxy, and for understanding the origins of our solar system, the direct imaging and characterization of Earth-like exoplanets is key. In a step towards achieving these goals, the Superluminous Tomographic Atmospheric Reconstruction with Laser-beacons for Imaging Terrestrial Exoplanets (STARLITE) mission uses five CubeSats in a highly elliptical orbit as artificial guide stars to enable tomographic reconstruction of the atmosphere for extreme multi-conjugate adaptive optics (MCAO). Through the use of current and next-generation extremely-large ground-based telescopes, the STARLITE constellation at its ∼350,000 km apogee can provide brighter than -10 magnitude artificial guide stars from a 10 cm launching telescope in a sub-arcminute field of view for up to an hour. Careful selection and design of the ∼760 nm on-board laser will allow O2 detection and characterization of exoplanet atmospheres. At a size of 12U, each satellite weighs only 19 kg and utilizes mostly commercially available off-the-shelf components to keep costs per satellite around $2M. In this paper, we will present the satellite mission concept and early system design for the STARLITE constellation.
NASA’s latest and most ambitious flagship space observatory, the $10 Billion dollar James Webb Space Telescope (JWST) represents such a major step in capability that it is difficult to identify any area of astronomy that will not undergo a profound change following its successful December 2021 launch and subsequent deployment. The recovery of images of exoplanets and their environments is among the key scientific drivers for which the mission was built. In 2008 a dedicated interferometer, designed by the authors, was accepted by the JWST NIRISS Instrument Team based in Montreal, adding Aperture Masking Interferometry (AMI) to JWST’s suite of modes. Fabricated in Canada and tested by Honeywell and CSA as well as NASA, it is now one of JWST’s supported scientific modes. Here we provide a high level description of the mode, and the science themes that originally motivated it.
The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv; deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet’s sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.
High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (∼1×) EDI has ∼1.4× smaller noise than conventional, and at >10× boost, EDI has ∼1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. For three (or four) steps, we calculate a multiplicative bandwidth of 1.8:1 (2.3:1), sufficient to handle the visible band (400 to 700 nm, 1.8:1) and most of TripleSpec (2.6:1).
We describe demonstrations of remarkable robustness to instrumental noises by using a multiple delay externally dispersed interferometer (EDI) on stellar observations at the Hale telescope. Previous observatory EDI demonstrations used a single delay. The EDI (also called “TEDI”) boosted the 2,700 resolution of the native TripleSpec NIR spectrograph (950-2450 nm) by as much as 10x to 27,000, using 7 overlapping delays up to 3 cm. We observed superb rejection of fixed pattern noises due to bad pixels, since the fringing signal responds only to changes in multiple exposures synchronous to the applied delay dithering. Remarkably, we observed a ~20x reduction of reaction in the output spectrum to PSF shifts of the native spectrograph along the dispersion direction, using our standard processing. This allowed high resolution observations under conditions of severe and irregular PSF drift otherwise not possible without the interferometer. Furthermore, we recently discovered an improved method of weighting and mixing data between pairs of delays that can theoretically further reduce the net reaction to PSF drift to zero. We demonstrate a 350x reduction in reaction to a native PSF shift using a simple simulation. This technique could similarly reduce radial velocity noise for future EDI’s that use two delays overlapped in delay space (or a single delay overlapping the native peak). Finally, we show an extremely high dynamic range EDI measurement of our ThAr lamp compared to a literature ThAr spectrum, observing weak features (~0.001x height of nearest strong line) that occur between the major lines. Because of individuality of each reference lamp, accurate knowledge of its spectrum between the (unfortunately) sparse major lines is important for precision radial velocimetry.
High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2.
KEYWORDS: Stars, Space operations, Data modeling, Tomography, Reconstruction algorithms, Saturn, Signal to noise ratio, Image resolution, Atmospheric modeling, Spectrographs
We demonstrate the use of existing observations from the CASSINI spacecraft to be used for studies of stellar targets. The stellar lightcurve produced as hard edges within the rings pass across the field of view produces a stellar occultation not unlike lunar occultations. These events are observed with an on-board spectrograph, providing coverage of the near infrared from 1 to 5 microns. Here we demonstrate how the technique can be used to make spatially resolved measurements of stellar structure and test these measurements against independently published angular sizes. We also show how this technique can be extended into mapping of complex circum stellar structure and identify molecular layers in the atmosphere of Omicron Ceti, an evolved star. Finally we demonstrate how several events can be combined tomographically to reconstruct high resolution images of stellar targets.
The Aperture Masked Interferometry (AMI) mode on JWST-NIRISS is implemented as a 7-hole, 15% throughput, non-redundant mask (NRM) that operates with 5-8% bandwidth filters at 3.8, 4.3, and 4.8 microns. We present refined estimates of AMI's expected point-source contrast, using realizations of noise matched to JWST pointing requirements, NIRISS detector noise, and Rev-V JWST wavefront error models for the telescope and instrument. We describe our point-source binary data reduction algorithm, which we use as a standardized method to compare different observational strategies. For a 7.5 magnitude star we report a 10-a detection at between
8.7 and 9.2 magnitudes of contrast between 100 mas to 400 mas respectively, using closure phases and squared visibilities in the absence of bad pixels, but with various other noise sources. With 3% of the pixels unusable, the expected contrast drops by about 0.5 magnitudes. AMI should be able to reach targets as bright as M=5. There will be significant overlap between Gemini-GPI and ESO-SPHERE targets and AMI's search space, and a complementarity with NIRCam's coronagraph. We also illustrate synthesis imaging with AMI, demonstrating an imaging dynamic range of 25 at 100 mas scales. We tailor existing radio interferometric methods to retrieve a faint bar across a bright nucleus, and explain the similarities to synthesis imaging at radio wavelengths. Modest contrast observations of dusty accretion flows around AGNs will be feasible for NIRISS AMI. We show our early results of image-plane deconvolution as well. Finally, we report progress on an NRM-inspired approach to mitigate mission-level risk associated with JWST's specialized wavefront sensing hardware. By combining narrow band and medium band Nyquist-sampled images taken with a science camera we can sense JWST primary mirror segment tip-tilt to lOmas, and piston to a few nm. We can sense inter-segment piston errors of up to 5 coherence lengths of the broadest bandpass filter used ( 250-500 0m depending on the filters). Our approach scales well with an increasing number of segments, which makes it relevant for future segmented-primary space missions.
A non-redundant pupil mask placed in front of a low-resolution integral field spectrograph (IFS) adds a spectral dimension to high angular resolution imaging behind adaptive optics systems. We demonstrate the first application of this technique, using the spectroscopic binary star system β CrB as our target. The mask and IFS combination enabled us to measure the first low-resolution spectrum of the F3-F5 dwarf secondary component of β CrB, at an angular separation 141 mas from its A5-A7Vp primary star. To record multi-wavelength closure phases, we collected interferograms simultaneously in 23 spectral channels spanning the J and H bands (1.1 μm-1.8 μm), using the Project 1640 IFS behind the 249-channel PalAO adaptive optics system on the Hale telescope at Palomar Observatory. In addition to providing physical information about the source, spectrally resolved mask fringes have the potential to enhance detection limits over single filter observations. While the overall dynamic range of our observation suffers from large systematic calibration errors, the information gleaned from the full channel range improves the dynamic range by a factor of 3 to 4 over the best single channel.
An optical technique called "interferometric spectral reconstruction" (ISR) is capable of increasing a spectrograph's
resolution and stability by large factors, well beyond its classical limits. We have demonstrated a 6-
to 11-fold increase in the Triplespec effective spectral resolution (R=2,700) to achieve R=16,000 at 4100 cm-1to 30,000 at 9600 cm-1 by applying special Fourier processing to a series of exposures with different delays
(optical path differences) taken with the TEDI interferometer and the near-infrared Triplespec spectrograph at
the Mt. Palomar Observatory 200 inch telescope. The TEDI is an externally dispersed interferometer (EDI) used
for Doppler radial velocity measurements on M-stars, and now also used for ISR. The resolution improvement
is observed in both stellar and telluric features simultaneously over the entire spectrograph bandwidth (0.9-2.45
μm). By expanding the delay series, we anticipate achieving resolutions of R=45,000 or more. Since the delay is
not continuously scanned, the technique is advantageous for measuring time-variable phenomena or in varying
conditions (e.g. planetary fly-bys). The photon limited signal to noise ratio can be 100 times better than a
classic Fourier Transform Spectrometer (FTS) due to the benefit of dispersion.
KEYWORDS: James Webb Space Telescope, Stars, Space telescopes, Visibility, Sensors, Planets, Telescopes, Calibration, Point spread functions, Wavefronts
Non-redundant masking (NRM) is a high contrast high resolution technique that is relevant for future space
missions dedicated to either general astrophysics or extrasolar planetary astronomy. On the ground NRM
has opened a rich target space between 0.5 to 4 resolution elements from bright stars. It enabled moderate
contrast very high angular resolution observations that have provided dynamical masses for targets beyond the
resolution of the Hubble Space Telescope. Such observations challenge the best models of ultra-cool dwarf stars'
atmospheres and interiors. The technique succeeds because it sidesteps the effects of speckle noise that plagues
direct imaging at moderate Strehl ratios. On a space telescope NRM mitigates instrument-induced speckle
noise, thus enabling high contrast even when images are barely diffraction-limited. The non-redundant mask in
the Fine Guidance Sensor Tunable Filter Imager (FGS-TFI) on the James Webb Space Telescope (JWST) will
open up a search space between 50 and 400 mas at wavelengths longer than 3.8μm. We present simulations that
estimate achievable contrast on JWST, and report preliminary results of a testbed experiment using a mask with
the same geometry as JWST's. We expect contrast of the order of 104 will be achievable in a 10 ks exposure
of an M = 7 star, with observing, target acquisition, and data calibration methods common to the three other
imaging instruments on board JWST. As an example of the potential science possible with NRM, we show that
if a planet were responsible for clearing the inner 5 AU of the disk around HR8799, it would likely be detectable
using JWST FGS-TFI's NRM at 4.6 microns. Stars as bright as M = 3 will also be observable with JWST's
NRM, meshing well with next-generation ground-based extreme adaptive optics coronagraphs. JWST NRM's
parameter space is inaccessible to both JWST coronagraphs and future 30-m class ground-based telescopes,
especially in the mid-IR.
The TripleSpec - Exoplanet Discovery Instrument (TEDI) is a device to use interferometric spectroscopy for the radialvelocity
detection of extrasolar planets at infrared wavelengths (0.9 - 2.4 μm). The instrument is a hybrid of an
interferometer and a moderate resolution echelle spectrograph (TripleSpec, R=2,700,) at the Cassegrain focus of the
Palomar 200" telescope. We describe our experimental diagnostic program using laboratory sources and standard stars in
different optical configurations, along with performance analysis and results. We explain our instrumental upgrade
development to achieve a long-term performance that can utilize our demonstrated, < 10 m/s, short-term velocity
precision.
The TripleSpec Exoplanet Discovery Instrument (TEDI) is optimized to detect extrasolar planets orbiting midto-
late M dwarfs using the Doppler technique at infrared wavelengths. TEDI is the combination of a Michelson
interferometer and a moderate-resolution near-infrared spectrograph, TripleSpec, mounted on the Cassegrain
focus of the Palomar 200-inch Hale Telescope. Here we present results from observations of a radial velocity
standard star and a laboratory source over the past year. Our results indicate that focus effects within the
interferometer, combined with non-common-path errors between the ThAr calibration source and starlight, limit
our performance to several 100 m/s. An upgraded version of TEDI, TEDI 2.0, will eliminate this behavior by
mixing ThAr with starlight in a scrambled fiber before a redesigned interferometer with minimal focal effects.
KEYWORDS: James Webb Space Telescope, Space telescopes, Stars, Wavefronts, Point spread functions, Coronagraphy, Telescopes, Sensors, Calibration, Mirrors
Non-redundant masking (NRM) is a high contrast high resolution technique that is relevant for future space
missions dedicated to either general astrophysics or extrasolar planetary astronomy. NRM mitigates not only
atmospheric but instrument-induced speckle noise as well. The recently added mask in the Fine Guidance
Sensor Tunable Filter Imager (FGS-TFI) on the James Webb Space Telescope (JWST) will open up a search
space between 50 and 400 mas at wavelengths longer than 3.8μm. Contrast of 104 will be achievable in a 10
ks exposure of an M = 7 star, with routine observing, target acquisition, and data calibration methods. NRM
places protoplanets in Taurus as well as Jovians younger than 300Myr and more massive than 2MJ orbiting
solar type stars within JWST's reach. Stars as bright as M = 3 will also be observable, thus meshing well
with next-generation ground-based extreme adaptive optics coronagraphs. This parameter space is inaccessible
to both JWST coronagraphs and future 30-m class ground-based telescopes, especially in the mid-IR. We show
that NRM used on future space telescopes can deliver unsurpassed image contrast in key niches, while reducing
mission risk associated with active primary mirrors.
We report the performance of Triplespec from commissioning observations on the 200-inch Hale Telescope
at Palomar Observatory. Triplespec is one of a set of three near-infrared, cross-dispersed spectrographs
covering wavelengths from 1 - 2.4 microns simultaneously at a resolution of ~2700. At Palomar, Triplespec
uses a 1×30 arcsecond slit. Triplespec will be used for a variety of scientific observations, including
moderate to high redshift galaxies, star formation, and low mass stars and brown dwarfs. When used in
conjunction with an externally dispersed interferometer, Triplespec will also detect and characterize
extrasolar planets.
The TEDI (TripleSpec - Exoplanet Discovery Instrument) is the first instrument dedicated to the near infrared radial
velocity search for planetary companions to low-mass stars. The TEDI uses Externally Dispersed Interferometry (EDI), a
combination of interferometry and multichannel dispersive spectroscopy. We have joined a white-light interferometer
with the Cornell TripleSpec (0.9 - 2.4 μm) spectrograph at the Palomar Observatory 200" telescope and begun an
experimental program to establish both the experimental and analytical techniques required for precision IR velocimetry
and the Doppler-search for planets orbiting low mass stars and brown dwarfs.
The TEDI (TripleSpec Exoplanet Discovery Instrument) will be the first instrument fielded specifically for finding low-mass
stellar companions. The instrument is a near infra-red interferometric spectrometer used as a radial velocimeter.
TEDI joins Externally Dispersed Interferometery (EDI) with an efficient, medium-resolution, near IR (0.9 - 2.4 micron)
echelle spectrometer, TripleSpec, at the Palomar 200 telescope. We describe the instrument and its radial velocimetry
demonstration program to observe cool stars.
We present a first cut instrument design package for the proposed 25 meter Cornell-Caltech Atacama Telescope (CCAT). The primary science for CCAT can be achieved through wide field photometric imaging in the short submillimeter through millimeter (200 μm to 2 mm) telluric windows. We present strawman designs for two cameras: a 32,000 pixel short submillimeter (200 to 650 μm) camera using transition edge sensed bare bolometer arrays that Nyquist samples (@ 350 μm) a 5'×5' field of view (FoV), and a 45,000 pixel long wavelength camera (850 μm to 2 mm) that uses slot dipole antennae coupled bolometer arrays with wavelength dependent sampling that covers up to a 20' square FoV. These are our first light instruments. We also anticipate "borrowed" instruments such as direct detection and heterodyne detection spectrometers will be available at, or nearly at first light.
Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data - the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber ν. This is the normalized RMS of the derivative of the spectrum and is proporotional to the photon-limited Doppler signal to noise ratio.
KEYWORDS: Adaptive optics, Calibration, Point spread functions, Modulation transfer functions, Visibility, Telescopes, Interferometry, Signal to noise ratio, Deconvolution, Binary data
Aperture masking interferometry and Adaptive Optics (AO) are two of the competing technologies attempting
to recover diffraction-limited performance from ground-based telescopes. However, there are good arguments
that these techniques should be viewed as complementary, not competitive. Masking has been shown to deliver
superior PSF calibration, rejection of atmospheric noise and robust recovery of phase information through the use
of closure phases. However, this comes at the penalty of loss of flux at the mask, restricting the technique to bright
targets. Adaptive optics, on the other hand, can reach a fainter class of objects but suffers from the difficulty
of calibration of the PSF which can vary with observational parameters such as seeing, airmass and source
brightness. Here we present results from a fusion of these two techniques: placing an aperture mask downstream
of an AO system. The precision characterization of the PSF enabled by sparse-aperture interferometry can now
be applied to deconvolution of AO images, recovering structure from the traditionally-difficult regime within the
core of the AO-corrected transfer function. Results of this program from the Palomar and Keck adaptive optical
systems are presented.
The TEDI (TripleSpec Externally Dispersed Interferometry) is an interferometric spectrometer that will be used to explore the population of planets around the lowest mass stars. The instrument, to be deployed on the Palomar 200 Cassegrain mount, includes a stabilized Michelson interferometer combined with a medium resolution, broad band (0.8 - 2.4 micron) spectrograph, TripleSpec. We describe the instrument design and its application to Doppler velocimetry and high-resolution spectroscopy.
We describe a plan to study the radial velocity of low mass stars and brown dwarfs using a combination of interferometry and multichannel dispersive spectroscopy, Externally Dispersed Interferometry (EDI). The EDI technology allows implementation of precision velocimetry and spectroscopy on existing moderate-resolution echelle or linear grating spectrograph over their full and simultaneous bandwidth. We intend to add EDI to the new Cornell TripleSpec infrared simultaneous JHK-band spectrograph at the Palomar Observatory 200" telescope for a science-demonstration program that will allow a unique Doppler-search for planets orbiting low mass faint M, L and T type stars. The throughput advantage of EDI with a moderate resolution spectrograph is critical to achieving the requisite sensitivity for the low luminosity late L and T dwarfs.
The nascent field of planet detection has yielded a host of extra-solar planet detections. To date, these detections have been the result of indirect techniques: the planet is inferred by precisely measuring its effect on the host star. Direct observation of extra-solar planets remains a challenging yet compelling goal. In this vein, the Center for Adaptive Optics has proposed a ground-based, high-actuator density extreme AO system (XAOPI), for a large (~10 m) telescope whose ultimate goal is to directly evidence a specific class of these objects: young and massive planets. Detailed system wave-front error budgets suggest that this system is a feasible, if not an ambitious, proposition. One key element in this error budget is the calibration and maintenance of the science camera wave front with respect to the wave-front sensor which currently has an allowable contribution of ~ 5 nanometers rms. This talk first summarizes the current status of calibration on existing ground-based AO systems, the magnitude of this effect in the system error budget and current techniques for mitigation. Subsequently, we will explore the nature of this calibration error term, it’s source in the non-commonality between the science camera and wave front sensor, and the effect of the temporal evolution of non-commonality. Finally, we will describe preliminary plans for sensing and controlling this error term. The sensing techniques include phase retrieval, phase contrast and external metrology. To conclude, a calibration scenario that meets the stringent requirement for XAOPI will be discussed.
As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An "extreme" adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >107 at angular separations of 0.2-1". ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.
Current and future large telescopes depend critically on laser guide
star adaptive optics (LGS AO) to achieve their scientific goals.
However, there are still relatively few scientific results reported
from existing LGS AO systems. We present some of the first science
results from the Lick Observatory sodium beacon LGS AO system. We
achieve high sensitivity to light scattered in the circumstellar
enviroment of Herbig Ae/Be stars on scales of 100-200 AU by coupling
the LGS AO system to a near-infrared (J,H,Ks bands) dual channel imaging polarimeter. We describe the design, implementation, and performance of this instrument. The dominant noise source near bright stars in AO images is a "seeing halo" of uncorrected speckles, and since these speckles are unpolarized, dual-channel polarimetry achieves a significant contrast gain. Our observations reveal a wide range of morphologies, including bipolar nebulosities with and without outflow-evacuated cavities and disk-mediated interaction among members of a binary. These data suggest that the evolutionary picture developed for the lower-mass T Tauri stars is also relevant to the Herbig Ae/Be stars, and demonstrate the ability of LGS AO systems to enhance the scientific capabilities of even modest sized telescopes.
Among the adaptive optics systems available to astronomers, the US Air Force Advanced Electro-Optical System (AEOS) is unique because it delivers very high order wave front correction. The Lyot Project includes the construction and installation of the world’s first diffraction-limited, optimized coronagraph that exploits the full astronomical potential of AEOS and represents a critical step toward the long-term goal of directly imaging and studying extrasolar planets (a.k.a. “exoplanets”). We provide an update on the Project, whose coronagraph saw first light in March 2004. The coronagraph is operating at least as well as predicted by simulations, and a survey of nearby stars has begun.
High dynamic range coronagraphy targeted at discovering planets around nearby stars is often associated with monolithic, unobstructed aperture space telescopes. With the advent of extreme adaptive optics (ExAO) systems with thousands of sensing and correcting channels, the benefits of placing a near-infrared coronagraph on a large segmented mirror telescope become scientifically interesting. This is because increased aperture size produces a tremendous gain in achievable contrast at the same angular distance from a point source at Strehl ratios in excess of 90\% (and at lower Strehl ratios on future giant telescopes such as the Thirty Meter Telescope). We outline some of the design issues facing such a coronagraph, and model a band-limited coronagraph on an aperture with a Keck-like pupil. We examine the purely diffractive challenges facing the eXtreme AO Planetary Imager (XAOPI) given the Keck pupil geometry, notably its inter-segment gap spacing of 6~mm.
Classical Lyot coronagraphs, with hard-edged occulting stops, are not efficient enough at suppressing diffracted light, given XAOPI's scientific goal of imaging a young Jupiter at a separation as close as 0.15 arcseconds (4λD at H on Keck) from its parent star. With a 4000 channel ExAO system using an anti-aliased spatially-filtered wavefront sensor planned for XAOPI, we wish to keep diffracted light due to coronagraphic design at least as low as the noise floor set by AO system limitations. We study the band-limited Lyot coronagraph (BLC) as a baseline design instead of the classical design because of its efficient light suppression, as well as its analytical simplicity. We also develop ways of investigating tolerancing coronagraphic mask fabrication by utilizing the BLC design's mathematical tractability.
Turbulence in the earth's atmosphere severely limits the resolution
and sensitivity of astronomical observations. The vertical
distribution of turbulence in the atmosphere has a profound effect on
the residuals after correction by an active instrument such as
adaptive optics or a fringe tracking interferometer. It has already
been shown that the South Pole has turbulence profiles unlike those
at any other site, dominated by ground layer turbulence, with low
free air seeing. This paper examines the meteorology, climatology and
atmospheric physics that produces these conditions. Combining meterological observations at remote sites with models of atmospheric turbulence allows quantitative extrapolation to the likely conditions at sites now under development and consideration that may provide the ultimate ground based site for near and mid-infrared interferometry. The high plateau sites in Antarctica will likely enable complete sky coverage for adaptive optics and interferometry in the near infrared with natural guide stars.
The Antarctic Planet Interferometer is a concept for an instrument designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperature found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at Dome C, an interferometer with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.
To properly characterize the atmospheric properties of a site for a future large telescope or interferometer, it is insufficient to measure quantities, such as the full-width at half-maximum of a stellar image, that have been integrated over the entire atmosphere. A knowledge of the turbulence distribution as a function of height is necessary, since this affects the ease and degree to which adaptive optics systems can improve the telescope’s resolution. Furthermore, some astronomical measurements, such as narrow-field differential astrometry at microarcsecond precision, depend critically on the amount of turbulence high in the atmosphere (up to 20km). In order to obtain the necessary site-testing data at remote sites such as those on the Antarctic plateau, we have designed a robust and reliable instrument based on an 85 mm refractive telescope, a gimbal-mounted sidereostat mirror, and a Multi-Aperture Scintillation Sensor (MASS). The instrument uses the spatial structure of single-star scintillation to measure vertical turbulence profiles from 0.5 to 20km. The MASS system is designed to operate completely autonomously throughout the Antarctic winter. It also has potential applications at existing observatory sites for quantifying the turbulence characteristics of the atmosphere in real-time.
Ground based adaptive optics is a potentially powerful technique for direct imaging detection of extrasolar planets. Turbulence in the Earth's atmosphere imposes some fundamental limits, but the large size of ground-based telescopes compared to spacecraft can work to mitigate this. We are carrying out a design study for a dedicated ultra-high-contrast system, the eXtreme Adaptive Optics Planet Imager (XAOPI), which could be deployed on an 8-10m telescope in 2007. With a 4096-actuator MEMS deformable mirror it should achieve Strehl >0.9 in the near-IR. Using an innovative spatially filtered wavefront sensor, the system will be optimized to control scattered light over a large radius and suppress artifacts caused by static errors. We predict that it will achieve contrast levels of 107-108 at angular separations of 0.2-0.8" around a large sample of stars (R<7-10), sufficient to detect Jupiter-like planets through their near-IR emission over a wide range of ages and masses. We are constructing a high-contrast AO testbed to verify key concepts of our system, and present preliminary results here, showing an RMS wavefront error of <1.3 nm with a flat mirror.
The primary limitation to ground based astronomy is the Earth's atmosphere. The atmosphere above the Antarctic plateau is different in many regards compared to the atmosphere at temperate sites. The extreme altitude, cold and low humidity offer a uniquely transparent atmosphere at many wavelengths. Studies at the South Pole have shown additionally that the turbulence properties of the night time polar atmosphere are fundamentally different to mid latitudes. Despite relatively strong ground layer turbulence, the lack of high altitude turbulence combined with low wind speeds presents favorable conditions for interferometry. The unique properties of the polar atmosphere can be exploited for Extrasolar Planet studies with differential astrometry, differential phase and nulling intereferometers. This paper combines the available data on the properties of the atmosphere at the South Pole and other Antarctic plateau sites for Extrasolar Planet science with interferometry.
We describe the symmetries present in the monochromatic point-spread function (PSF) corrected by an adaptive optics (AO) system to Strehl ratios of about 60% or greater. We expand the PSF in powers of the Fourier transform of the phase disturbance over an arbitrarily shaped and apodized entrance aperture. We show that for traditional unapodized aperture geometries, bright speckles pinned to the bright Airy rings are part of an antisymmetric first order perturbation of the perfect PSF (we make no assumptions about the symmetries of the aperture). This first order term redistributes power within each bright ring, but contributes no power in regions where the perfect image would have no light because it is modulated by the square root of the perfectly corrected PSF. It also vanishes at the center of the image. There are two symmetric second degree terms, one is negative at the center, and is also modulated by the perfect Airy field strength--it reduces to the Marechal approximation at the center of the PSF. The other second degree term is non-negative everywhere, zero at the image center, and is responsible for the extended halo--it limits the dynamic range in the dark portions of the image.
These features can be exploited by appropriate telescope and
instrument design, observing strategies, and data reduction methods
to improve the dynamic range of AO observations.
Of the many novel coronagraphic and nulling techniques that have
been suggested to improve image contrast for exoplanet detection,
one of the most promising is the Quadrant Phase Mask suggested by
Rouan et al. Analysis of this optical system has previously been performed by discrete Fourier transform methods, that result in systematic errors due to the implicit assumptions of the methods and mathematical singularities in the transform of the phase mask. In this paper, we describe an analytical treatment of this optical system that treats these singularities explicitly. We calculate the leakage of a Quadrant Phase Mask Coronagraph with these analytical techniques, and show that a Quadrant Phase Mask rejects all on-axis light for an unaberrated, unobscured circular aperture and is therefore a nearly perfect coronagraph. We demonstrate why the Quadrant Phase Mask coronagraph suffers degraded performance with an obscured aperture, and propose modifications to the pupil geometry to
mitigate this problem.
The Lick Observatory laser guide star adaptive optics system has undergone continual improvement and testing as it is being integrated as a facility science instrument on the Shane 3 meter telescope. Both Natural Guide Star (NGS) and Laser Guide Star (LGS) modes are now used in science observing programs. We report on system performance results as derived from data taken on both science and engineering nights and also describe the newly developed on-line techniques for seeing and system performance characterization. We also describe the future enhancements to the Lick system that will enable additional science goals such as long-exposure spectroscopy.
The Lick Observatory laser guide star adaptive optics system has been significantly upgraded over the past two years in order to establish it as a facility science instrument on the Shane 3 meter telescope. Natural Guide Star (NGS) mode has been in use in regular science observing programs for over a year. The Laser Guide Star (LGS) mode has been tested in engineering runs and is now starting to do science observing. In good seeing conditions, the system produces K-band Strehl ratios >0.7 (NGS) and >0.6 (LGS). In LGS mode tip/tilt guiding is achieved with a V~16 natural star anywhere inside a 1 arcminute radius field, which provides about 50% sky coverage. This enables diffraction-limited imaging of regions where few bright guidestars suitable for NGS mode are available. NGS mode requires at least a V~13 guidestar and has a sky coverage of <1%. LGS science programs will include high resolution studies of galaxies, active galactic nuclei, QSO host galaxies and dim pre-main sequence stars.
Space surveillance systems have recently been developed that exploit high order adaptive optics systems to take diffraction limited images in visible light on 4 meter class telescopes. Most astronomical targets are faint, thus driving astronomical AO systems towards larger subapertures, and thus longer observing wavelengths for diffraction limited imaging at moderate Strehl ratio. There is, however, a particular niche that can be exploited by turning these visible light space surveillance systems to astronomical use at infrared wavelengths. At the longer wavelengths, the Strehl ratio rises dramatically, thus placing more light into the diffracted Airy pattern compared to the atmospheric halo. A Lyot coronagraph can be used to suppress the diffracted light from an on axis star, and observe faint companions and debris disks around nearby, bright stars. These very high contrast objects can only be observed with much higher order adaptive optics systems than are presently available to the astronomical community. We describe simulations of high order adaptive optics coronagraphs, and outline a project to deploy an astronomical coronagraph at the Air Force AEOS facility at the Maui Space Surveillance System.
We describe the design, characterization and performance of the IR Camera for Adaptive Optics at Lick (IRCAL). IRCAL is a 1-2.5 micron camera optimized for use with the LLNL Lick adaptive optics system on the Shane 3 m telescope. Using diamond-turned gold-coated optics, the camera provides high efficiency diffraction limited imaging throughout the near- IR. IRCAL incorporates optimizations for obtaining high dynamic range images afforded by adaptive optics, coronagraphic masks, and a cross-dispersed silicon grism for high resolution spectroscopy.
The Antarctic plateau has the potential for being the best site on Earth for conducting astronomical observations from the near-infrared to the sub-millimeter. Particular gains are expected in the 1 to 5 micron region, where the high altitude, low water vapor content, and low thermal emission from the atmosphere combine to create observing conditions unequalled elsewhere on the surface of the earth. We describe an instrument, the infrared photometer- spectrometer (IRPS), that we are using to quantify site conditions at the South Pole by measuring the near-infrared sky brightness. We also describe some of the unique problems associated with building instruments to work in Antarctica.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.