KEYWORDS: Control systems, Databases, Sensors, Computer simulations, Control systems design, Telecommunications, Systems modeling, Adaptive control, Unmanned aerial vehicles, Device simulation
We describe the methodology, tools and technologies for designing and implementing communication and control systems for networked automated or driver assist vehicles. In addressing design, we discuss enabling methodologies and our suite of enabling computational tools for formal modeling, simulation, and implementation. We illustrate our description with design, development and implementation work we have performed for Automated Highway Systems, Autonomous Underwater Vehicles, Mobile Offshore Base, Unmanned Air Vehicles, and Cooperative Adaptive Cruise Control. We conclude with the assertion - borne from our experience - that ground vehicle systems with any degree of automated operation could benefit from the type of integrated development process that we describe.
We describe potential military robotics applications for the heavy vehicle automation and driver assistance research that has been conducted on at the California Partners for Advanced Transit and Highways (PATH). Specifically, we summarize the state of vehicle automation research at PATH by beginning with a short description of automated platoon operations with eight light duty passenger vehicles. Then we focus on automation of a Class 8 Freightliner Model FLD 125 tractor with 45-ft trailer, and lateral driver assist installed in a 10-wheel International snowplow. We also discuss full automation plans for a Kodiak 4000-ton/hour rotary snowblower, two 40-ft New Flyer buses, one 60-ft New Flyer articulated bus, and three Freightliner Century tractor-trailer combinations. We discuss benefits for civilian applications - congestion relief, driver safety, and fuel economy/emissions reductions. We then follow with a discussion of the benefits from potential military spin-ons which include, as dual-use applications, driver safety and fuel economy/emissions. We end by discussing the additional military benefit in the conduct of tactical resupply operations, where vehicles of similar weight class and performance as those experimented by PATH can be used in automated convoys with savings in manpower and survivability in addition to improved mission operations.
We are developing dynamic position (DP) control and evaluation systems for semi-submersible vessel system called a Mobile Offshore Base (MOB). In concept, the MOB is a self-propelled prepositioned floating base consisting of three to five vessels, and comprising a mile-long runway to accommodate C-17 take-off and landing operations and allow cargo transfer from container ships. Separate MOB barges would embark toward a preposition point about 100 km offshore, assemble along a line, then execute a military mission in a variety of sea states. Specific concepts call for them to be mechanically or electronically linked, while a concept refinement uses a hybrid approach, linking them mechanically during low sea states and electronically once the environmental disturbances increase. We discuss issues and approaches with MOB control, with a focus on the overarching control architecture. We frame our discussion, however, on microsimulation techniques derived from a discipline best described as simulation of dynamically reconfigurable multi-agent hybrid dynamic systems. Specifically we describe the intended use of our microsimulation technique to evaluate various control concepts and ultimately, to test the feasibility of employing DP on the MOB.
Understanding and characterizing the forward environment of a ground vehicle is a pivotal element in determining the appropriate maneuver-response strategy while under varied degrees of vehicle automation. Potential degrees of automation span the probable near-term adoption of longitudinal crash countermeasure warning devices all the way through the longer-term objective of full vehicle automation. Between these extremes lies partially automated longitudinal crash avoidance, a potentially rich area of application for synthetic vision. This paper addresses the application of synthetic vision to vehicle automation from a systems perspective: from development of a collision avoidance framework, to application of the appropriate sensor-environmental descriptions with which synthetic vision applications can address. Obstacle detection modules, the human cognitive component and the dynamics of automated ground vehicle control comprise elements of this framework. Areas to fulfill a structured program and suggested areas for further in-depth research are identified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.