KEYWORDS: Long wavelength infrared, Cameras, Imaging systems, Sensors, Signal to noise ratio, Microbolometers, Calibration, Hyperspectral imaging, Black bodies, Temperature metrology
Performance studies and instrument designs for hyperspectral pushbroom imagers in thermal wavelength region are
introduced. The studies involve imaging systems based on both MCT and microbolometer detector. All the systems
employ pushbroom imaging spectrograph with transmission grating and on-axis optics. The aim of the work was to
design high performance instruments with good image quality and compact size for various application requirements.
A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument
radiation from all the surfaces of the instrument itself. This challenge is even bigger in hyperspectral instruments, where
the optical power from the target is spread spectrally over tens of pixels, but the instrument radiation is not dispersed.
Without any suppression, the instrument radiation can overwhelm the radiation from the target by 1000 times.
In the first imager design, BMC-technique (background monitoring on-chip), background suppression and temperature
stabilization have been combined with cryo-cooled MCT-detector. The performance of a very compact hyperspectral
imager with 84 spectral bands and 384 spatial samples has been studied and NESR of 18 mW/(m2srμm) at 10 μm
wavelength for 300 K target has been achieved. This leads to SNR of 580. These results are based on a simulation
model.
The second version of the imager with an uncooled microbolometer detector and optics in ambient temperature aims at
imaging targets at higher temperatures or with illumination. Heater rods with ellipsoidal reflectors can be used to
illuminate the swath line of the hyperspectral imager on a target or sample, like drill core in mineralogical analysis.
Performance characteristics for microbolometer version have been experimentally verified.
The optical analyzers used in on-line and off-line process measurements set a large variety of special demands for optical detectors, i.e. customized detectors are needed. Both the detector (array) and its read-out circuit are affected. The typical volume for process analyzers is so low that fully customized ASICs easily become too expensive for signal recovery solutions in optical detectors. This is due to high fixed costs in ASIC development.
Low Temperature Co-fired Ceramics (LTCC) substrates allow high integration grade and the smart packaging solutions needed in optical detectors. The ceramic substrate is suitable for hermetic packaging. The high integration grade is possible thanks to multilayer capability, with narrow metal strips as well as blind and buried vias which can be placed directly underneath the solder pads. Standard connection methods can be used, i.e. soldering, gluing and wire bonding for components and detector chip assembly. By using small passive components and bare chip or chip scale packaged active components, one is able to integrate the read-out functions in a small enough space.
This paper briefly presents three different cases where infrared photoconductive detector arrays are attached to read-out circuitry which is made on LTCC substrate. The detector read-out hybrids are packaged in hermetic metal packages. The packages have been either non-cooled or thermoelectrically cooled. 24 element PbS, 4 by 4 element PbS and 128 element MCT cases are handled. Also an example of an integrated infrared light emitting diode array for an LED-spectrometer is presented. General feasibility analysis, including some electrical test results and the management of substrate dimensional tolerances, is given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.