Pt/anodized TiO2/SiC based metal-oxide-semiconductor (MOS) devices were fabricated and characterized for their
sensitivity towards propene (C3H6). Titanium (Ti) thin films were deposited onto the SiC substrates using a filtered
cathodic vacuum arc (FCVA) method. Fluoride ions containing neutral electrolyte (0.5 wt% NH4F in ethylene glycol)
were used to anodize the Ti films. The anodized films were subsequently annealed at 600 °C for 4 hrs in an oxygen rich
environment to obtain TiO2. The current-voltage (I-V) characteristics of the Pt/TiO2/SiC devices were measured in
different concentrations of propene. Exposure to the analyte gas caused a change in the Schottky barrier height and hence
a lateral shift in the I-V characteristics. The effective change in the barrier height for 1% propene was calculated as
32.8 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 157 mV was
measured at 620°C during exposure to 1% propene.
Zinc oxide (ZnO) is one of the most promising electronic and photonic materials to date. In this work, we present an
enhanced ZnO Schottky gas sensor deposited on SiC substrates in comparison to those reported previously in literature.
The performance of ZnO/SiC based Schottky thin film gas sensors produced a forward lateral voltage shift of 12.99mV
and 111.87mV in response to concentrations of hydrogen gas at 0.06% and 1% in air at optimum temperature of 330 ºC.
The maximum change in barrier height was calculated as 37.9 meV for 1% H2 sensing operation at the optimum
temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.