As the visual perception window of the drone system, the lens provides great help for obtaining visual information, detection, and recognition. However, traditional lenses carried on drones cannot have characteristics of a large field of view (FoV), small size, and low weight at the same time. To meet the above requirements, we propose a panoramic annular lens (PAL) system with 4K high resolution, a large FoV of (30 deg to 100 deg) × 360 deg, an angular resolution of 12.2 mrad of aerial perspective, and great imaging performance. We equip a drone system with our designed PAL to collect panoramic image data at an altitude of 100 m from the track and field and obtain the first drone-perspective panoramic scene segmentation dataset Aerial-PASS, with annotated labels of track and field. We design an efficient deep architecture for aerial scene segmentation. Trained on Aerial-PASS, the yielded model accurately segments aerial images. Compared with the ERF-PAPNet and SwiftNet semantic segmentation networks, the network we adopted has higher recognition accuracy with the mean IoU greater than 86.30%, which provides an important reference for the drone system to monitor and identify specific targets in real-time in a large FoV.
Panoramic annular lens (PAL) system consists of a panoramic head block unit and a relay lens system, adopting a plane cylindrical projection method to project a cylindrical field of view around the optical axis 360° into a two-dimensional planar annular region to realize super hemispherical imaging. PAL system requires large field of view imaging on a limited image plane, which inevitably results in lower image resolution and poor local detail imaging. However, the information processing speed gets faster with the development of 5G, which leads to a growing demand for better image quality and clarity. This paper presents a PAL system matching image sensors with 4K resolution, which can demonstrate the details about the object and get a smooth and ultra-high definition image. Unlike other sensors, it has large image faces and tiny pixels and the effective number of the pixel is about 24.3 million (4K × 6K). The proposed PAL system has 6 sets of 9 lenses with compact structure. The F-theta distortion of the full field of view is less than 1%, and the modulation transfer function value of each field of view is greater than 0.5 at the Nyquist spatial frequency of 130lp/mm which approaches diffraction limitation. The designed system has good imaging quality and meets the application requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.