SPIE Journal Paper | 10 September 2013
OE Vol. 52 Issue 09
KEYWORDS: Crystals, Mid-IR, Difference frequency generation, Lithium niobate, Laser sources, Nonlinear crystals, Einsteinium, Nonlinear optics, Fiber lasers, Laser crystals
A multiwavelength midinfrared quasi-phase-matched (QPM) difference frequency generation (DFG) scheme is proposed based on a segmented temperature controlling technique for the uniform grating periodically poled lithium niobate (PPLN). The QPM DFG output performances have been investigated under the fixed pump and signal wavelength conditions, respectively. Our theoretical results show that when the pump wavelength is fixed at 1.08 μm, three idler QPM bands, located at 3.46, 3.50, and 3.57 μm, have been obtained, where the temperatures of the three PPLN segments with the same length are set at 20°C, 70°C, and 100°C. However, when the signal wavelength is fixed at 1.58 μm, six idler QPM bands, located at 2.95, 3.06, 3.14, 3.63, 3.72, and 3.83 μm, have been achieved with the same crystal temperature distribution of 20°C, 70°C, and 100°C.