Thermal emitter, as one of the important components in the thermal photovoltaic system, is mainly used to absorb the energy radiated by the heat source and convert it into energy that can be absorbed by the photovoltaic cell. We use the RCWA algorithm to optimize the thermal emitter based on the refractory metal Mo microhole array with a quadrangular arrangement. The optimized structure has a high selective emissivity characteristic in the 1-2.4 μm waveband. The averaged emissivity can reach more than 79.6%, which is about 60% higher than that of the unstructured emitter; at the same time, the band emissivity gradually decreases after the wavelength of 2.4 μm, achieving a selective emission control. Using the laser direct writing technology, dry metal etching, and other micro-fabrication techniques, the thermal emitter is fabricated with the feature sizes as follows: the hole diameter, the array period, and the hole depth are 1 μm, 1.4 μm, and 3.4 μm, respectively; the area with microhole structures is 12×12 mm. The experimental measurement suggests that the averaged emissivity arrives at 70.07%. This study provides an alternative candidate for selective thermal emitters and also offers a technical experience for practical applications.
A laser with a wavelength of 660 nm was focused by microsized tapered glass tubes with different diameters of the exit. By using the 3-μm optical fiber and micrometer displacement stages, we measured the light intensity distribution around the focal spot, the focal distance, and the transmission coefficient of the light transmitted through these tubes. The focusing effect for the glass tubes with smaller outlet diameters of the exit was found to be much stronger than those with larger diameters of the exit. Furthermore, the dependence of the size and distance and the maximum intensity of the focal spot on the tubes’ diameter of exit are obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.