In this paper, the index guide and band gap guide polymer microstructured optical fibers are designed. For the index guide fiber, a liquid crystal core is used and 60dB extinction ratio tunable attenuator is obtained. For the bandgap polymer microstructured optical fibers, a regular structure is presented from experiment and an ideal defect can be realized easily by a new method.
A chirped, phase-shifted structure is demonstrated for compact multi-wavelength DFB fiber laser at room temperature for the first time. The chirped structure provides separated resonance cavities and then the stable multi-wavelength operation. The equivalent phase shift method is demonstrated to realize the desired chirp and phase shifts simply and flexibly. A 44pm-spaced, dual-wavelength DFB fiber laser is then achieved experimentally, which is the narrowest spacing ever reported for a compact multi-wavelength fiber laser.
Polarization mode dispersion can decrease the performance of the fiber-optic transmission seriously. Thus the compensation of Polarization mode dispersion is a critical issue in fiber optics. In this paper, a novel Polarization mode dispersion compensator is suggested and demonstrated based on a special-design fiber Bragg grating. A polarization mode dispersion compensation grating with 10-156ps dynamical span and flat-top response is first reported based on the combination of reconstruction algorithm and the equivalent-chirp method. A 10-Gb/s system experiment using the tunable PMD compensator shows the power penalty of BER at is about 1.2dBwhen the PMD of the system is 60ps.
A cost-effective tunable dispersion compensator using reconstruction-equivalent-chirp method is fabricated. Only uniform phase mask, sub-micron precision and uniform thin metal film are required in the fabrication. The group delay ripple is less than 14 ps during the whole tuning range. An experiment in 40-Gb/s system is demonstrated with a power penalty of 0.7dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.