Microresonators with high quality factors have recently attracted much attention due to their ability to dramatically enhance light intensity by confining light within a small mode volume for a long period of time. They provide a versatile platform for researching on fundamental physics and practical applications ranging from nonlinear and quantum optics to ultrasensitive sensing. Lithium niobate (LN) is a artificial crystalline material with large electro-optical coefficients and high second-order nonlinearity, therefore, it is a good candidate for active photonic devices. Here, we report on our recent progresses on the mass fabrication of monocrystalline LN microdisk resonators with Q factors higher than 1e6 and LN-silica hybrid microdisk resonators with Q factors of the order of 1e5. The active tunable characteristics of the resonance wavelengths of the fabricated LN microdisk resonators and its based transmission modulations were demonstrated based on the electro-optic and thermo-optic effects of LN crystal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.