We present designs of a diffractive polarizer having low zeroth-order reflectivity that is compact, potentially mass-producible and cost-effective, and compatible for high-power applications. It consists of subwavelength grating structures superimposed over a diffraction grating. Using rigorous coupled wave analysis, we optimized the parameters of multilevel grating structures to achieve antireflection for both incident TE and TM polarization states with one polarization passing in the zeroth order and the other into the first and higher orders. We focused on polarizer designs for the 1.31-µm wavelength range, and the theoretical values for zeroth-order reflection were calculated to be 0.01% for TE and 0.29% for TM modes. The zeroth-order transmission efficiencies were 97.2% for TE and 0.01% for TM modes. A prototype of one design was fabricated and tested to verify the functionality of the device, and the zeroth-order reflection was determined to be 1.2% and 3.5% for the two modes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.