Purpose: Quantitative lung measures derived from computed tomography (CT) have been demonstrated to improve prognostication in coronavirus disease 2019 (COVID-19) patients but are not part of clinical routine because the required manual segmentation of lung lesions is prohibitively time consuming. We aim to automatically segment ground-glass opacities and high opacities (comprising consolidation and pleural effusion).Approach: We propose a new fully automated deep-learning framework for fast multi-class segmentation of lung lesions in COVID-19 pneumonia from both contrast and non-contrast CT images using convolutional long short-term memory (ConvLSTM) networks. Utilizing the expert annotations, model training was performed using five-fold cross-validation to segment COVID-19 lesions. The performance of the method was evaluated on CT datasets from 197 patients with a positive reverse transcription polymerase chain reaction test result for SARS-CoV-2, 68 unseen test cases, and 695 independent controls.Results: Strong agreement between expert manual and automatic segmentation was obtained for lung lesions with a Dice score of 0.89 ± 0.07; excellent correlations of 0.93 and 0.98 for ground-glass opacity (GGO) and high opacity volumes, respectively, were obtained. In the external testing set of 68 patients, we observed a Dice score of 0.89 ± 0.06 as well as excellent correlations of 0.99 and 0.98 for GGO and high opacity volumes, respectively. Computations for a CT scan comprising 120 slices were performed under 3 s on a computer equipped with an NVIDIA TITAN RTX GPU. Diagnostically, the automated quantification of the lung burden % discriminate COVID-19 patients from controls with an area under the receiver operating curve of 0.96 (0.95–0.98).Conclusions: Our method allows for the rapid fully automated quantitative measurement of the pneumonia burden from CT, which can be used to rapidly assess the severity of COVID-19 pneumonia on chest CT.
e propose a fast and robust multi-class deep learning framework for segmenting COVID-19 lesions: Ground Glass opacities and High opacities (including consolidations and pleural effusion), from non-contrast CT scans using convolutional Long Short-Term Memory network for self-attention. Our method allows rapid quantification of pneumonia burden from CT with performance equivalent to expert readers. The mean dice score across 5 folds was 0.8776 with a standard deviation of 0.0095. A low standard deviation between results from each fold indicate the models were trained equally good regardless of the training fold. The cumulative per-patient mean dice score (0.8775±0.075) for N=167 patients, after concatenation, is consistent with the results from each of the 5 folds. We obtained excellent Pearson correlation (expert vs. automatic) of 0.9396 (p<0.0001) and 0.9843 (p<0.0001) between ground-glass opacity and high opacity volumes, respectively. Our model outperforms Unet2d (p<0.05) and Unet3d (p<0.05) in segmenting high opacities, has comparable performance with Unet2d in segmenting ground-glass opacities, and significantly outperforms Unet3d (p<0.0001) in segmenting ground-glass opacities. Our model performs faster on CPU and GPU when compared to Unet2d and Unet3d. For same number of input slices, our model consumed 0.83x and 0.26x the memory consumed by Unet2d and Unet3d.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.