Image intensifiers (I2) have gained wide acceptance throughout the Army as the premier nighttime mobility sensor for the individual soldier, with over 200,000 fielded systems. There is increasing need, however, for such a sensor with a video output, so that it can be utilized in remote vehicle platforms, and/or can be electronically fused with other sensors. The image-intensified television (I2TV), typically consisting of an image intensifier tube coupled via fiber optic to a solid-state imaging array, has been the primary solution to this need. I2TV platforms in vehicles, however, can generate high internal heat loads and must operate in high-temperature environments. Intensifier tube dark current, called "Equivalent Background Input" or "EBI", is not a significant factor at room temperature, but can seriously degrade image contrast and intra-scene dynamic range at such high temperatures. Cooling of the intensifier's photocathode is the only practical solution to this problem. The US Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD) and Ball Aerospace have collaborated in the reported effort to more rigorously characterize intensifier EBI versus temperature. NVESD performed non-imaging EBI measurements of Generation 2 and 3 tube modules over a large range of ambient temperature, while Ball performed an imaging evaluation of Generation 3 I2TVs over a similar temperature range. The findings and conclusions of this effort are presented.
KEYWORDS: Fiber optic illuminators, Cameras, Sensors, Imaging systems, Aerospace engineering, Real time imaging, Diodes, Laser video displays, Video, Laser development
This paper discusses the development history of real-time imaging active gated TV sensors from 1970 to present at Ball Aerospace and Technologies Corp. A number of AGTV systems are covered including: Video Imaging Detection and Ranging which was developed for hydrofoils in Southeast Asia, AC- 130U gunship, Airborne Laser-Based Enhanced Detection and Observation System search and rescue system for the Canadian Government, and several long-range surveillance systems. Technology developments related to sensor and illuminator over the past 3 decades are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.