The conventional self-mixing sensing systems employ a detection scheme utilizing the photocurrent from an integrated photodiode. This work reports on an alternative way of implementing a Vertical-Cavity Surface-Emitting Laser (VCSEL) based self-mixing sensor using the laser junction voltage as the source of the self-mixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving
with reductions in component costs and complexity. The theoretical linkage between voltage and photocurrent within the self-mixing model is presented. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory. Similar error trends for both detection regimes were observed.
KEYWORDS: Optical coherence tomography, Signal to noise ratio, Sensors, Retina, Signal detection, Holography, Eye, Cornea, 3D image processing, 3D image reconstruction
We report a new approach in optical coherence tomography (OCT) termed full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired using a Fourier holography recording system illuminated with a swept-source. This paper presents theoretical and experimental study of the signal-to-noise ratio of the full-field approach versus serial image acquisition approach, represented by 3F-OCT and "flying-spot" OCT systems, respectively.
In a self-mixing type laser range finder the current of the laser is modulated with a triangle wave to produce a range of optical frequencies. However, the electrical signal does not produce a perfect linear sweep in optical frequency due to thermal and other effects in the laser. This leads to errors in the accuracy and resolution of the range finder. In this paper, we describe and implement a method in software to systematically determine the optimal shape of the injected waveform needed to eliminate these thermally induced measurement errors. With this method we do not require the more complicated and expensive optical techniques used by other researchers to recover the optical frequency variations with regard to injection current. The averaging of a reasonable number of samples gave sub-millimeter accuracy when the optimal current shape was used. The uncertainty in the average measurements are improved by roughly six times compared to the conventional triangular modulation. The reshaping also results in the range finding system being less sensitive to changes in ambient temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.