KEYWORDS: Electrocardiography, Machine learning, Heart, Signal processing, Signal detection, Neural networks, Education and training, Data modeling, Cardiovascular disorders, Distortion
The heart is an important organ in the human body. The heart pumps blood throughout the body. This mechanical action is generated by electrical signals which can be measured. Measuring this electrical signal, we can perform a series of diagnostics to examine different functions of the heart. The electrocardiogram is a tool to record this activity with the purpose of examining the condition of the conductive system in terms of the timing of the activity of the cardiac muscle. The activity recorded by the ECG is the net electric activity between different points around the body. Using the ECG and the radial pulse we can find the cardiac rhythm in a given situation. Variations in the parameters of these signals could mean possible malfunctions of the conduction system. Most of these variations are known and have been related to heart diseases. Arrhythmias can also be determined using the ECG. In this paper, we will record the ECG of each person in the group, and we will determine a variety of parameters of the cardiac system, including the cardiac vector, the cardiac rate, and the P-R interval. Using the ECG recordings, we will train a neural network, in an unsupervised way, to learn the different types of signals for different individuals. We will also investigate the possible sources of distortion of the signal as well as the effect of inspiration and expiration on the recording of the ECG. In preliminary data obtained, the ECG signals have frequency averages between 0.38, 0.39 and 0.4 Hertz, for individuals between 20 and 25 years old.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.