We have characterized a photoresist used for the fabrication of gray-scale diffractive optic elements in terms of Dill's and Mack's model parameters. The resist model parameters were employed for the simulations of developed resist profiles for sawtooth patterns executed by solving the Eikonal equation with the fast-marching method. The simulated results were shown to be in good agreement with empirical data.
CD (critical dimension) uniformity on a wafer is affected by several factors such as resist coating, bake, development, etch processes, scanner performance, and photomask CD uniformity. Especially, shot uniformity or in-field CD uniformity is strongly dependent on scanner and photomask. CD error of a photomask and imaging error of a scanner lead to nonuniformity of in-field linewidth distribution. In this paper we propose and demonstrate a shot uniformity improvement method. The shot uniformity improvement method described in this paper utilizes the original shot uniformity map and dose latitude to determine the distribution of illumination intensity drop suitable for correcting CD error on the wafer. The distribution of illumination intensity drop is realized by controlling pattern density of contact hole pattern with 180° phase on the backside of the photomask. We applied this technique to several masks and it was found that global CD uniformity could be excellently improved by the method.
As the design rule shrinks, intra-field CD control becomes more difficult. Flare induced by lens contamination is one of CD variation sources across the exposed field and its distributions are different from tool to tool. To use the exposure tool with the contaminated lens, CD correction method is to be specified to improve the wafer CD uniformity. In this paper, the local flare values are measured using dose-to-clear method and CD measurement method in order to confirm the exposure tool condition. Then we design a mask whose transmittance is controlled locally for CD uniformity enhancement. The mask has several phase-out holes in the quartz side. By distributing the holes with respect to the local area flare, we can make the intensity distribution opposite to the lens local flare.
An analytical approach to X-phenomenon in alternating phase-shifting masks is given in the framework of the thin-mask approximation. We present an analytical expression for the focus-dependent intensity imbalance between 0° and 180° phase regions when there exists relative phase error. It is shown that X-phenomenon results from the interference between 0th diffracted order, which originates from the phase error and has an in- or out-of-phase component with respect to the ±1st diffracted orders depending on the defocus directions, and the ±1st diffracted orders. Dependences of the intensity imbalance on the phase error and the duty ratio of the structure are given.
As the feature size of integrated circuits shrinks, the demands for the critical dimension (CD) uniformity on wafers are becoming tighter. In the era of low k1, moreover, mask CD uniformity should be controlled even more stringently due to the higher mask error enhancement factor (MEEF). Mask CD non-uniformity can originate from several sources which include photomask blanks and mask-making processes (exposure, post-exposure bake (PEB), development, and etch processes). Analyzing the CD error sources and eliminating the origins are very important tasks in optimization of mask-manufacturing processes. In this paper, we focus on the side error in mask CD uniformity and present a simple method for separating and evaluating the origins. Especially, quantitative analysis of the side errors induced by photomask blanks and mask-making processes, respectively, is given. Photomask blanks are found to be one of the main sources of the side error and it is shown that the temperature distribution of the PEB process during the ramp-up as well as the stable period should be maintained uniformly for chemically amplified resist (CAR) blanks in order to reduce the process-induced side error.
To achieve higher resolution and critical dimension (CD) accuracy in mask fabrication, 50KeV E-beam systems are used widely. However, as a high acceleration system is adapted, the degree of fogging effect caused by multi-scattering electrons becomes more serious. Although considerable efforts have been made, fogging effect cannot be removed perfectly, therefore several compensation techniques are applied instead. Fogging effect not only deteriorates CD uniformity but also makes mean to target (MTT) control difficult. Moreover, Fogging effect causes proximity effect correction (PEC) error according to PEC methods such as dose modulation type usually used in variable shaped beam (VSB) system and GHOST type commonly used in Gaussian beam system. In this paper, we investigated the fogging effect under the various exposure conditions at raster scan Gaussian beam system and VSB system experimentally and analytically.
Recently, the interest in enhancement of critical dimension (CD) accuracy has been significantly increased to satisfy requirements of sub 100nm devices. Proximity effect correction becomes an indispensable choice to improve CD accuracy within local area, and fogging and loading effects compensation has been tried to enhance global CD uniformity. However, proximity effect correction (PEC) parameters obtained without considering additional exposure such as fogging effect and the exposure to compensate it are not appropriate to fabricate real devices. In this paper, we investigated the relation of PEC parameters and various pattern densities and additional exposure experientially, analyzed theoretically using the edge image model to describe absorbed energy. Through evaluations, we could optimize proximity effect correction parameters for EBM-3500 taking additional exposure into account, and realize higher CD accuracy in mask fabrication.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.