The spatial resolution of an x-ray computed tomography (CT) system is determined by its components, including the x-ray source, detector, and image reconstruction process. It is necessary to analyze the contributions of each component to understand the total spatial resolution of the system. Detector blur in flat panels is usually estimated with an edge function and data fitting, but the contribution of cross-talk (inter-pixel signal leakage) to detector blur is difficult to measure directly. Here, we report a simple method to isolate the cross-talk. We analytically modeled the spatial resolution of a CT scanner that uses a Varex flat-panel detector with 0.2 mm pixels and a 450 kVp, dual-focus x-ray tube. Our model examines the contributions of the x-ray focal spot size, detector pixel size, cross-talk, filtering, and backprojection. For the cross-talk model, we measured covariance in air, and from the covariance, we generated a digital filter that approximates the blur due to cross-talk. We validated the model by experimentally measuring spatial resolution with a 0.05 mm-diameter tungsten wire. The wire serves as an impulse function. The image is therefore an impulse response, and its Fourier transform yields the modulation transfer function (MTF). The model and measurement show correspondence within 5% at the 50% point. Our main finding was that detector cross-talk dominates the blurring, dropping the total MTF by over 30 % at the 50% point. Our methods are easily reproducible and do not require sophisticated test-objects, difficult alignment procedures, or image-processing as is common with other measurement methods.
Neutron radiography and computed tomography may be used to investigate internal structures of complex multi-material objects nondestructively. Thermal neutrons are more effective at producing high-contrast radiographs of objects composed of elements with relatively low atomic numbers (Z). A capability to produce high-quality CT reconstructions from both thermal and fast neutron computed tomography (nCT) using a lens-coupled imaging was demonstrated using various Additively Manufactured (AM’d) and Electrical Discharge Machining (EDM) phantoms, with layers and distinct features, made with intentional voids and out of high- and low-Z elements.
X-ray computed tomography (CT)systems can produce high resolution images, in which small (sub-millimeter) features can be detected. This requires the X-rays to sufficiently penetrate the object and interact strongly enough to produce measurable attenuation. Low atomic number (low Z), low density objects shielded by high atomic number (high Z) materials result in X-ray reconstructions that lack sufficient contrast to differentiate interior features from noise and reconstruction artifacts. Fast neutron CT offers complementary information to X-rays with superior penetration through high Z shielding and with less severe beam hardening artifacts. However, spatial resolution in X-ray imaging systems is generally superior to that of fast neutron imagers. Here, we quantitatively compare these two complementary modalities to demonstrate the ability to observe small feature locations within two multi-material objects. Quantitative measures include calculation of image gradient at material edges, contrast-to-noise ratio, and F1 score.
Fast neutron Computed Tomography (nCT) is a powerful and non-invasive imaging modality that can be used to examine features and defects within low Z elements (such as plastic) hidden or shielded by high Z elements (such as tungsten, lead, or even stainless steel). This study built a fast neutron radiography and nCT system and explored various multi-material complex objects utilizing a fast neutron beam at The Ohio State University Research Reactor (OSURR), which provides ~5.4 x 10^7 n·cm-2·s-1 neutron flux at 1.6 MeV (median energy). The lens-based system includes an Electron Multiplying (EM) CCD camera, a light-tight enclosure, and a high light yield 1 cm thick Polyvinyl Toluene (PVT) scintillator provided by Lawrence Livermore National Laboratory (LLNL). A variety of test exemplars were scanned, with the number of projections for each scan ranging from 90 to 180, covering either 180 or 360 degrees. The exposure time for each projection ranged down to one minute, enabling a full nCT scan within a few hours of operation at a 500-kW low power research reactor. 3D tomograms were constructed using Octopus reconstruction software. Results showed that not only could nCT projection data be successfully constructed into volume data, but good contrast between HDPE and a millimeter-sized tungsten ball could be obtained. The 3D tomography presents high contrast to clearly discern HDPE features and voids inside tungsten shielding that are not discernable using 2D radiography.
Additive manufacturing systems are becoming progressively more capable of printing geometrically complex structures from a wide range of materials. To ensure the print quality of these materials over the duration of the build process, there is a need for in-situ diagnostics which can provide real-time information during fabrication, as well as information that can be processed after print completion. Here we present an in-situ radio frequency diagnostic for liquid metal jetting, which employs a millimeter-wave waveguide device to monitor the impedance changes caused by moving droplets. Experimental results indicate promise for the characterization of size, timing, and motion of metal droplets in an advanced manufacturing system.
Macroscopic porous membranes with pore diameter uniformity approaching the nanometer scale have great potential to significantly increase the speed, selectivity, and efficiency of molecular separations. We present fabrication, characterization, and molecular transport evaluation of nanoporous thin silicon-based sieves created by laser interferometric lithography (LIL). This fabrication approach is ideally suited for the integration of nanostructured pore arrays into larger microfluidic processing systems, using a simple all-silicon lithographic process. Submilli-meter-scale planar arrays of uniform cylindrical and pyramidal nanopores are created in silicon nitride and silicon, respectively, with average pore diameters below 250 nm and significantly smaller standard error than commercial polycarbonate track etched (PCTE) membranes. Molecular transport properties of short cylindrical pores fabricated by LIL are compared to those of thicker commercial PCTE membranes for the first time. A 10-fold increase in pyridine pore flux is achieved with thin membranes relative to commercial sieves, without any modification of the membrane surface.
Electroplated gold surfaces of the type used for MEMS switches were surveyed by atomic force microscopy (AFM) to define the surface topographical features, and by x-ray photoelectron spectroscopy (XPS) to determine the chemical composition of the contact surface. The gold surfaces were contacted with electrochemically sharpened gold and tungsten probes using an interface force microscope (IFM), capable of simultaneously measuring contact currents from 10 fA to 10 mA and forces ranging from 0.01 to 100 uN. Both attractive and repulsive forces were observed, and attractive forces on the probe tip were found to exist at significant distances (greater than 5 nm) from the gold surface. The radius of the probe tip is on the order of a micron, making it a useful model system for a single-asperity contact on an actual MEMS switch-contact surface. The results of these single-contact measurement events are compared with contact measurements made with MEMS switches of various sizes and actuation schemes to understand the origins of contact resistance and switch failure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.