Coupling computed tomography with positron emission tomography (PET/CT) supplements tracer uptake with anatomical information for localization and improves PET quantification by using CT images for attenuation correction. Iodinated contrast agents in CT scans are used to enhance vascularity, organs, and abnormalities and for characterize lesions. However, current attenuation correction methodologies generate overestimates in standardized uptake values (SUV) in the presence of materials with high atomic numbers such as iodinated contrast agents. Utilizing electron density (ED) from dual energy CT (DECT) may result in less biased attenuation correction as ED is proportional to attenuation at PET emission energy of 511 keV. To evaluate different methods of attenuation correction, five phantom configurations with varying iodine concentrations and constant concentrations of Fluorine-18 were scanned using PET/CT and DECT at similar scanning parameters. Phantom configurations were scanned at CTDIvol 2, 4, 6, and 8 mGy with DECT to evaluate the effect of dose on ED and SUV. For attenuation correction, ED was transformed into attenuation at 511 keV through reported material compositions and ED. SUV demonstrated less biased behavior in the presence of iodinated contrast media with ED-based correction (-1.3% to 1.4%, p=0.271) compared to nominal correction (1.5% to 8.6%, p=0.000). No interaction effect between dose and phantom configuration or effect of dose on SUV was present, which was also reflected in ED stability in different tissue mimics. Use of ED-based attenuation correction from DECT allowed for less biased SUV when increasing concentrations of iodinated contrast agents, indicating quantitative advantages of DECT coupled with PET.
This erratum corrects an error in “Measuring temporal stability of positron emission tomography standardized uptake value bias using long-lived sources in a multicenter network,” by D. Byrd et al.
Positron emission tomography (PET) is a quantitative imaging modality, but the computation of standardized uptake values (SUVs) requires several instruments to be correctly calibrated. Variability in the calibration process may lead to unreliable quantitation. Sealed source kits containing traceable amounts of Ge68 / Ga68 were used to measure signal stability for 19 PET scanners at nine hospitals in the National Cancer Institute’s Quantitative Imaging Network. Repeated measurements of the sources were performed on PET scanners and in dose calibrators. The measured scanner and dose calibrator signal biases were used to compute the bias in SUVs at multiple time points for each site over a 14-month period. Estimation of absolute SUV accuracy was confounded by bias from the solid phantoms’ physical properties. On average, the intrascanner coefficient of variation for SUV measurements was 3.5%. Over the entire length of the study, single-scanner SUV values varied over a range of 11%. Dose calibrator bias was not correlated with scanner bias. Calibration factors from the image metadata were nearly as variable as scanner signal, and were correlated with signal for many scanners. SUVs often showed low intrascanner variability between successive measurements but were also prone to shifts in apparent bias, possibly in part due to scanner recalibrations that are part of regular scanner quality control. Biases of key factors in the computation of SUVs were not correlated and their temporal variations did not cancel out of the computation. Long-lived sources and image metadata may provide a check on the recalibration process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.