Electromagnetic coupled resonator arrays (CRAs) doped with a quantum two-level system allow for the quantum simulation of a Mott-insulator to superfluid phase transition. We demonstrate that the order of this simulated phase transition depends on the type of dynamics. Thus, a first order like phase transition can be induced by a quench dynamics, while a second order like phase transition is produced by an adiabatic dynamics. In addition, we show that the underlying macroscopic behavior of the phase transition in other many body systems, such as domain nucleation and phase coexistence, can also be observed in CRAs. This universal behavior emerges from the light-matter interaction and the topology of the array. Therefore, the latter can be used to manipulate the photonic transport properties of the simulated super fluid phase.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.