We develop schemes to generate, manipulate and detect single photons at various frequencies including telecom wavelengths. With detectors based on superconducting nanowires we combine very high detection efficiency with high time resolution and very low noise levels. We demonstrate on-chip implementation of single photon techniques as well as long distance implementations using deployed optical fibers.
Superconducting nanowire single photon detectors (SNSPDs) have demonstrated advantages over traditional detectors in many fields [1]. Most fiber-coupled SNSPDs are coupled to single mode fibers, limiting their usability for applications where large surface area detectors are needed, for example fluorescence detection and satellite-based quantum communication [2][3]. Other important requirements for many applications are broadband detection efficiency, and low timing jitter [4]. So far, the increased meander length of multimode detectors, and the therefore increased kinetic inductance and number of imperfections due to film inhomogeneities have limited the timing jitter [5]. Moreover, combining low timing jitter with high detection efficiency and low dark count rate in one device is challenging due to the tradeoffs between different properties of SNSPDs [6].
In this paper, we achieved high efficiency and strong saturation over a broad wavelength range with a low timing jitter of 16.99 ps while maintaining a low dark count rate of < 0.2 Hz for an SNSPD coupled to a 50 µm core multimode fiber. To enhance the broadband absorption from 405 nm to 830 nm, detectors were fabricated on an optimized SiO2 cavity and Aluminum mirror. The geometry of the nanowire was also tuned to reach a good internal saturation of efficiency over the visible/NIR range but also to carry high current to get a large signal. Furthermore, a cryogenic readout amplifier was optimized to improve the signal to noise ratio and thus lead to high time resolution. Our devices can be readily used to enable higher resolution and faster quantum optics, bio-imaging, laser ranging and other optical experiments.
In this paper, we review theoretical and experimental research progress on timing properties of superconducting nanowire single-photon detectors, including six possible mechanisms that induce timing jitter and experiments towards ultra-low timing jitter.
This paper reviews some recent research progress in superconducting nanowire single-photon detectors (SNSPDs) at the infrared spectrum range, with particular emphasis on detection efficiency and timing jitter. For detection efficiency, we present fractal SNSPDs with reduced polarization sensitivity; for timing jitter, we present two mechanisms of device timing jitter – vortex-crossing-induced timing jitter and spatial-inhomogeneity-induced timing jitter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.