Three-dimensional (3D) metamaterials show the potential for realizing efficient nonlinear nanoscale devices. Despite the recent progress, the nonlinear metamaterials lack in terms of conversion efficiencies when compared against conventional nonlinear materials that rely on phase-matching techniques. Here, we demonstrate how the nonlinear responses of 3D metamaterials can be improved by stacking metasurfaces on top of each other and by applying phase-matching techniques. We demonstrate this by successfully fabricating phase-matched metamaterials consisting of stacked metasurfaces. Especially, we observe a 25-fold enhancement of second harmonic generation emission from a device consisting of five metasurfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.