This paper focuses on the problem of buffering performance optimization for optical packet switch with shared WDM (Wavelength Division Multiplexing) optical buffers. For this purpose, several packet scheduling algorithms are proposed to make full use of buffering resources. Influences of these algorithms on optical packet switch are evaluated by simulation experiments. Simulation results show that under different traffic load, different packet scheduling algorithms should be adopted. In addition, the performance of optical buffers also depends on the granularity of FDL.
In the study of dynamic routing and wavelength assignment (DRWA) algorithms and protocols in optical networks, blocking probability is a chief criterion for performance evaluation. But it does not always capture the full effect of a particular algorithm on other aspects, such as fairness problem, which refers to the variability in blocking probabilities experienced by connection requests between various node pairs. Most commercial routing protocols, such as OSPF, prefers to adopt the shortest path for a particular connection, also brings unfairness to diverse connection requests, and such an unfairness becomes more serious in optical networks without wavelength conversion due to wavelength continuity constraint. Some literature have concerned this fairness problem and proposed several fairness enhancement methods. But unfortunately, they will deteriorate the overall blocking probability. In this paper, we try to optimize the fairness and blocking probability simultaneously via the alternate routing strategy, and a novel classified alternate routing (CAR) approach will be adopted. In our investigations, we will consider the optimization of alternate path set determination strategy, wavelength assignment and path selection method, and link weight function, etc. Comparisons and collaborations with formerly proposed fairness enhancement methods will be also presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.