The upcoming IEEE standard P4001 outlines a set of parameters for characterizing the performance of hyperspectral cameras along with recommended measurement procedures. This study concentrates on validating a simplified approach to measure the across-track spatial resolution of a pushbroom hyperspectral camera with a sensor sampling factor of two or higher, in comparison to the scanning-based approach described in the standard. The findings indicate that the snapshot-based method produces values for the width of the sampling line spread function in the across-track direction that closely match those obtained through scanning with sub-pixel steps for hyperspectral cameras with a sensor sampling factor of two or higher.
Due to complexity and bulkiness of instrumentation, it has been highly difficult to make hyperspectral measurements on the location where the actual samples are. Also, demanding off-line data processing has prevented in obtaining immediate results for decision making and actions on the measurement spot.
To solve these issues Specim Ltd has introduced a mobile hyperspectral camera operating in the 400-1000nm spectral range. Based on a spectrometer with push-broom technology, this new mobile camera collects 10-20 times more light from the target than filter based cameras. It results in higher SNR and/or quicker image acquisition in similar illumination conditions. In addition to the portability, the camera has integrated data processing capability and easy user interface. For the first time, the applications can be uploaded in the camera and obtain push-a-button results. The applications change the camera operations, and data processing to match the user requirements. The software included to the camera is used to generate the applications with the graphical user interface without a need for programming.
The camera offers a ready-to-go hyperspectral platform for various OEM industries in agriculture, food safety, law enforcement, and health care to rapidly develop application solutions to their end users. Similarly, researchers and professionals in several application fields can quickly adopt the camera to their everyday work.
This paper illustrates the design targets and challenges, as well as the full features in the mobile hyperspectral imager. In addition to the technological description, the results from the pilot phase field and laboratory tests are shown.
Passive imaging of concealed objects at stand-off distances in excess of a few meters requires both excellent spatial,
thermal and temporal resolution from the terahertz imaging system. The combination of these requirements while
keeping the overall system cost at a reasonable level has been the motivation for this joint work. The THz imaging
system under development is capable of sub-Kelvin NETD at video frame rates. In this paper we report the first imaging
results from a 16-pixel array of superconducting antenna-coupled NbN vacuum-bridge microbolometers, operated within
a cryogen-free, turn-key refrigerator. In addition to the system overview, we shall also address the uniformity of the
detectors and present passive indoors raster-scanned imagery.
Technologies to design and fabricate high-bit-rate chip-to-chip optical interconnects on printed wiring boards (PWB) are studied. The aim is to interconnect surface-mounted component packages or modules using board-embedded optical waveguides. In order to demonstrate the developed technologies, a parallel optical interconnect was integrated on a standard FR4-based PWB. It consists of 4-channel BGA-mounted transmitter and receiver modules as well as of four polymer multimode waveguides fabricated on top of the PWB using lithographic patterning. The transmitters and receivers built on low-temperature co-fired ceramic (LTCC) substrates include flip-chip mounted VCSEL or photodiode array and 4x10 Gb/s driver or receiver IC. Two microlens arrays and a surface-mounted micro-mirror enable optical coupling between the optoelectronic device and the waveguide array. The optical alignment is based on the marks and
structures fabricated in both the LTCC and optical waveguide processes. The structures were optimized and studied by the use of optical tolerance analyses based on ray tracing. The characterized optical alignment tolerances are in the limits of the accuracy of the surface-mount technology.
General design principles for surface plasmon enhanced near-field transducers are presented. Light transmission through a corrugated cylindrical aperture is studied via the BOR-FDTD method.
We introduce a technique which enables FDTD modeling of the transmission of obliquely incident plane waves through an aperture in a film having infinite lateral extent. As an example we analyze surface plasmon enhanced light transmission through a slit in a silver film.
Integration of high-speed parallel optical interconnects into printed wiring boards (PWB) is studied. The aim is a hybrid optical-electrical board including both electrical wiring and embedded polymer waveguides. Robust optical coupling between the waveguide and the emitter/detector should be achieved by the use of automated pick-and-place assembly. Different coupling schemes were analyzed by combining non-sequential ray tracing with Monte-Carlo tolerance simulation of misalignments. A modular demonstrator was designed based on three different kind of optical coupling schemes: butt-coupling and couplings based on microlens arrays and on micro ball lenses. The optical front-ends were implemented with PIN and flip-chip-VCSEL arrays as well as 10-Gb/s/channel electronics onto LTCC-based (low-temperature co-fired ceramic) transmitter and receiver modules, which were surface mounted on high-speed PWBs. An electrical simulation model was developed for the design of a VCSEL-based transmitter circuit. Polymer waveguides were fabricated on separate FR-4 boards to allow characterization of alignment tolerances with different waveguides. Optical and adhesion properties of several potential waveguide materials were characterized. The simulations and experiments suggest that, with optimized optomechanical structures and with low loss waveguides, it is possible to achieve acceptable total path loss and yield with the accuracy of automated assembly.
Integration of high-speed parallel optical interconnects into printed wiring boards (PWB) is studied. The aim is a hybrid optical-electrical board including both electrical wiring and embedded polymer waveguides. Robust optical coupling between the waveguide and the emitter/detector should be achieved by the use of automated pick-and-place assembly. Different coupling schemes were analyzed by combining non-sequential ray tracing with Monte-Carlo tolerance simulation of misalignments. The simulations demonstrate that, with optimized optomechanical structures and with very low loss waveguides, it is possible to achieve acceptable total path loss and yield with the accuracy of automated assembly. A technical demonstrator was designed and realized to allow testing of embedded interconnects based on three different kind of optical coupling schemes: butt-coupling, and couplings based on micro-lens arrays and on micro-ball lenses. They were implemented with PIN and flip-chip-VCSEL arrays as well as 10-Gb/s/channel electronics onto LTCC-based (low-temperature co-fired ceramic) transmitter and receiver modules, which were surface mounted on high-speed PWBs. The polymer waveguides were on separate FR-4 boards to allow testing and characterization of alignment tolerances with different waveguides. With micro-lens array transmitter, the measured tolerances (±10 μm) were dominated by the thickness of the waveguides.
In the case of imaging optics for imaging cellular phones, special attention has to be paid on the cost of the lens system. The number of lens elements has to be minimized, but the image quality has to be maximized. It is important that optimum quality/cost - ratio is found. The image sensor characteristics and human visual system preferences have to be taken into consideration as well for the design. In this paper, we present our new image quality metric. The performance of the metric is investigated using subjective tests on different lens designs and compared with MTF metric. We show that our metric has a good correlation with human observer and performs better than MTF metric. Finally, we give some examples of optimization based on our metric.
In this paper, an imaging system simulation tool is presented. With the tool, it is possible to simulate the performance (quality) of an imaging system. Furthermore, the system allows optimization of the lens system for a given image sensor. Experiments have shown that the tool is useful in actual lens design.
An adjustable extremely short external cavity (ESEC; cavity length 0...50 microns) can be used to tune the wavelength of an edge emitting Fabry-Perot semiconductor laser up to two percents. This means about 30 nm tuning range for the 1550-nm lasers and about 15 nm tuning range for the 800-nm lasers. In addition to the use in WDM and other tunable laser applications, this phenomenon can be directly used in realizing wavelength tuning sensitive near field sensors. In this paper, we discuss the ESEC laser tuning mechanism by using various numerical models and experimentation. We show simulations and experimental results for two different wavelength tuning schemes: a single mirror tuning, and tuning by using a micromachined Fabry Perot interferometer. In addition, we discuss and show results on wavelength tuning enhanced readout in near field optical data storage, and on near field surface profilometry via laser wavelength tuning.
In this paper we describe how finite difference time domain (FDTD) calculations can be used in the modeling of extremely short external cavity (ESEC) lasers used in modern optical data storage systems. We study the operation of direct semiconductor laser read/write heads that utilize either a conventional edge emitting laser or very small aperture laser. The storage medium is assumed to be a first-surface-recorded phase change (e.g. SGT) disc. The external cavity is formed between the laser's front facet and the disc. The length of the ESEC is typically 0.1 to 1.0 microns. By using FDTD we can study the behavior of the electric field in the ESEC in detail, taking into account the vector field effects resulting from the three-dimensional nature of the data marks and laser apertures. We calculate the distributions of electric field amplitudes, power flow and absorption in/near the external cavity. In addition, we calculate the effective reflectance spectrum of the ESEC and use this data as input into a phenomenological laser model to simulate the readout signal, i.e., the laser's output power and/or wavelength.
This paper introduces the usage of directly UV-photopatternable sol-gel based materials and the processing methods for the fabrication of binary diffractive optical elements. We designed and modeled a binary axicon - an optical element, which produces almost diffraction free beam in a specified distance from the element. We fabricated sol-gel based hybrid-glass materials and tailored their processing parameters to fit the demands of the axicon design. Resolution of 2 microns, film thickness of 850 nm, and certain morphological properties were required. The materials were derived from zirconium(IV)isopropoxide, methacrylic acid, and methacryloxypropyltritethoxysilane. We determined the morphological and line quality of the fabricated axicons as a function of the UV-irradiation dose. In addition, we measured the optical characteristics of the axicons in terms of the axial and radial intensity profiles. The reasons for the differences between calculated and measured values are discussed.
KEYWORDS: Transmitters, Sensors, Monte Carlo methods, Scattering, Receivers, Vertical cavity surface emitting lasers, Computer simulations, Diffraction, Ray tracing, Data modeling
In this paper we describe how finite difference time domain (FDTD) calculations can be used in the modeling of extremely short external cavity (ESEC) lasers. We concentrate on the applications of ESEC lasers in modern optical data storage systems: we study the operation of direct semiconductor laser read/write heads that utilize either a conventional edge emitting laser or very small aperture laser. The storage medium is assumed to be a first-surface-recorded phase change (e.g. SGT) disc. The external cavity is formed between laser's front facet and disc. The length of the ESEC is typically 0.1 to 1.0 microns. By using FDTD we can study the behavior of the electric field in the ESEC in detail, taking into account the vector field effects resulting from the three-dimensional nature of the data marks and laser apertures. We calculate the distributions of electric field amplitudes, power flow and absorption in/near the external cavity. In addition, we calculate the effective reflectance spectrum of the ESEC and use this data as input into a phenomenological laser model to simulate the readout signal (i.e. laser's output power and/or wavelength) as the disk is scanned. One-dimensional FDTD models were used for qualitative analysis of ESEC laser's wavelength and power characteristics.
We demonstrate the design and performance of an array-type diffractive element, which is capable of modifying the beam of a matrix-type vertical-cavity-surface-emitting-laser (VCSEL). The diffractive element was designed for line-of-sight or non- line-of-sight multi-beam transmitter with a maximum illuminating angle of 50 degrees. To demonstrate wide-angle illumination, a single element providing the largest 50-degree illumination angle was designed and fabricated. The element was designed in the paraxial domain by the geometrical map- transformation method. Beam deflection to the desired angle was performed by Lohmann's detour-phase principle. The local diffraction efficiency of the binary element was analyzed by rigorous electromagnetic diffraction theory. The element was fabricated as a pixel-array, in which the pixel size was 200 nm X 200 nm and the size of the element was 250 micrometer X 250 micrometer. The performance of the element was characterized by measuring the irradiance at the observation plane by a CCD-camera, and by measuring the diffraction efficiencies of three diffraction orders with a separate detector. The measured diffraction efficiency and the irradiance distribution of the element for the -1st order was 27.5%, which was in fair agreement with the calculated 23.9% efficiency after taking the real properties of the VCSEL beam into consideration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.