Deep convolutional neural networks (CNNs) based transfer learning is an effective tool to reduce the dependence on hand-crafted features for handling medical classification problems, which may mitigate the problem of the insufficient training caused by the limited sample size. In this study, we investigated the discrimination power of the features at different CNN levels for the task of classifying epithelial and stromal regions on digitized pathologic slides which are prepared from breast cancer tissue. We extracted the low level and high level features from four different deep CNN architectures namely, AlexNet, Places365-AlexNet, VGG, and GoogLeNet. These features are used as input to train and optimize different classifiers including support vector machine (SVM), random forest (RF), and k-nearest neighborhood (KNN). A number of 15000 regions of interest (ROIs) acquired from the public database are employed to conduct this study. The result was observed that the low-level features of AlexNet, Places365-AlexNet and VGG outperformed the high-level ones, but the situation is in the opposite direction when the GoogLeNet is applied. Moreover, the best accuracy was achieved as 89.7% by the relatively deep layer of max pool 4 of GoogLeNet. In summary, our extensive empirical evaluation may suggest that it is viable to extend the use of transfer learning to the development of high-performance detection and diagnosis systems for medical imaging tasks.
Predicting metastatic tumor response to chemotherapy at early stage is critically important for improving efficacy of clinical trials of testing new chemotherapy drugs. However, using current response evaluation criteria in solid tumors (RECIST) guidelines only yields a limited accuracy to predict tumor response. In order to address this clinical challenge, we applied Radiomics approach to develop a new quantitative image analysis scheme, aiming to accurately assess the tumor response to new chemotherapy treatment, for the advanced ovarian cancer patients. During the experiment, a retrospective dataset containing 57 patients was assembled, each of which has two sets of CT images: pre-therapy and 4-6 week follow up CT images. A Radiomics based image analysis scheme was then applied on these images, which is composed of three steps. First, the tumors depicted on the CT images were segmented by a hybrid tumor segmentation scheme. Then, a total of 115 features were computed from the segmented tumors, which can be grouped as 1) volume based features; 2) density based features; and 3) wavelet features. Finally, an optimal feature cluster was selected based on the single feature performance and an equal-weighed fusion rule was applied to generate the final predicting score. The results demonstrated that the single feature achieved an area under the receiver operating characteristic curve (AUC) of 0.838±0.053. This investigation demonstrates that the Radiomic approach may have the potential in the development of high accuracy predicting model for early stage prognostic assessment of ovarian cancer patients.
Accurate tumor segmentation is a critical step in the development of the computer-aided detection (CAD) based quantitative image analysis scheme for early stage prognostic evaluation of ovarian cancer patients. The purpose of this investigation is to assess the efficacy of several different methods to segment the metastatic tumors occurred in different organs of ovarian cancer patients. In this study, we developed a segmentation scheme consisting of eight different algorithms, which can be divided into three groups: 1) Region growth based methods; 2) Canny operator based methods; and 3) Partial differential equation (PDE) based methods. A number of 138 tumors acquired from 30 ovarian cancer patients were used to test the performance of these eight segmentation algorithms. The results demonstrate each of the tested tumors can be successfully segmented by at least one of the eight algorithms without the manual boundary correction. Furthermore, modified region growth, classical Canny detector, and fast marching, and threshold level set algorithms are suggested in the future development of the ovarian cancer related CAD schemes. This study may provide meaningful reference for developing novel quantitative image feature analysis scheme to more accurately predict the response of ovarian cancer patients to the chemotherapy at early stage.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.