Adaptive lenses enable compact, fast and quasi-motionless scanning in optical microscopy [1]. One drawback, however, is that the elements of an imaging system are usually optimized for a certain design-focal-length of the adaptive lens. In particular, spherical aberrations negatively influence the axial and lateral resolution as well as the signal strength in a confocal microscope. We address this problem using a novel fluid-membrane lens that is based on a piezo-glass composite membrane, where an ultrathin glass membrane is sandwiched between two piezo rings. With their two degrees of freedom, they can bend and buckle the membrane, enabling different rotated conic-section-like surfaces. An iterative control algorithm enables the simultaneous, independent tuning of the focal length and the induced spherical aberrations. We apply our adaptive lens in a confocal microscope that is extended with an additional phase measurement system to enable a wavefront-based control of the adaptive lens. Applying the aberration correction to a confocal measurement of a phantom yields an enhancement of
the axial resolution improvement compared to the uncorrected measurement. To investigate the usability of the system for biological specimen, we show confocal measurements at zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland.
[1] Katrin Philipp, André Smolarski, Nektarios Koukourakis, Andreas Fischer, Moritz Stürmer, Ulrike Wallrabe, and Jürgen W Czarske, Volumetric HiLo microscopy employing an electrically tunable lens, Optics Express Vol. 24, Issue 13, pp. 15029-15041 (2016)
We present a fluid-membrane lens with two piezoelectric actuators that offer versatile, circular symmetric lens surface shaping. A wavefront-measurement-based control system ensures robustness against creeping and hysteresis effects of the piezoelectric actuators. We apply the adaptive lens to correct synthetic aberrations induced by a deformable mirror. The results suggest that the lens is able to correct spherical aberrations with standard Zernike coefficients between 0 μm and 1 μm, while operating at refractive powers up to about 4m-1. We apply the adaptive lens in a custom-built confocal microscope to allow simultaneous axial scanning and spherical aberration tuning. The confocal microscope is extended by an additional phase measurement system to include the control algorithm. To verify our approach, we use the maximum intensity and the axial FWHM of the overall confocal point spread function as figures of merit. We further discuss the ability of the adaptive lens to correct specimen-induced aberrations in a confocal microscope.
Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.
Deformable mirrors are the standard adaptive optical elements for aberration correction in confocal microscopy. Their usage leads to increased contrast and resolution. However, these improvements are achieved at the cost of bulky optical setups. Since spherical aberrations are the dominating aberrations in confocal microscopy, it is not required to employ all degrees of freedom commonly offered by deformable mirrors. In this contribution, we present an alternative approach for aberration correction in confocal microscopy based on a novel adaptive lens with two degrees of freedom. These lenses enable both axial scanning and aberration correction, keeping the setup simple and compact. Using digital holography, we characterize the tuning range of the focal length and the spherical aberration correction ability of the adaptive lens. The operation at fixed trajectories in terms of focal length and spherical aberrations is demonstrated and investigated in terms of reproducibility. First results indicate that such adaptive lenses are a promising approach towards high-resolution, high-speed three-dimensional microscopy.
We present a HiLo microscope with an electrically tunable lens for high-contrast three-dimensional image acquisition. HiLo microscopy combines wide field and speckled illumination images to create optically sectioned images. Additionally, the depth-of-field is not fixed, but can be adjusted between wide field and confocal-like axial resolution. We incorporate an electrically tunable lens in the HiLo microscope for axial scanning, to obtain three-dimensional data without the need of moving neither the sample nor the objective. The used adaptive lens consists of a transparent polydimethylsiloxane (PDMS) membrane into which an annular piezo bending actuator is embedded. A transparent fluid is filled between the membrane and the glass substrate. When actuated, the piezo generates a pressure in the lens which deflects the membrane and thus changes the refractive power. This technique enables a large tuning range of the refractive power between 1/f = (-24 . . . 25) 1/m. As the NA of the adaptive lens is only about 0.05, a fixed high-NA lens is included in the setup to provide high resolution. In this contribution, the scan properties and capabilities of the tunable lens in the HiLo microscope are analyzed. Eventually, exemplary measurements are presented and discussed.
The high stiffness to weight ratio of glass fibre-reinforced polymers (GFRP) makes them an attractive material for rotors e.g. in the aerospace industry. We report on recent developments towards non-contact, in-situ deformation measurements with temporal resolution up to 200 µs and micron measurement uncertainty. We determine the starting point of damage evolution inside the rotor material through radial expansion measurements. This leads to a better understanding of dynamic material behaviour regarding damage evolution and the prediction of damage initiation and propagation. The measurements are conducted using a novel multi-sensor system consisting of four laser Doppler distance (LDD) sensors. The LDD sensor, a two-wavelength Mach-Zehnder interferometer was already successfully applied for dynamic deformation measurements at metallic rotors. While translucency of the GFRP rotor material limits the applicability of most optical measurement techniques due to speckles from both surface and volume of the rotor, the LDD profits from speckles and is not disturbed by backscattered laser light from the rotor volume. The LDD sensor evaluates only signals from the rotor surface. The anisotropic glass fibre-reinforcement results in a rotationally asymmetric dynamic deformation. A novel signal processing algorithm is applied for the combination of the single sensor signals to obtain the shape of the investigated rotors. In conclusion, the applied multi-sensor system allows high temporal resolution dynamic deformation measurements. First investigations regarding damage evolution inside GFRP are presented as an important step towards a fundamental understanding of the material behaviour and the prediction of damage initiation and propagation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.