The Mako airborne longwave-infrared hyperspectral sensor is a whiskbroom imager operating in the 7.6-13.2 μm region with 44-nm spectral sampling and <30 mK noise-equivalent differential temperature (NEDT). It has undergone progressive development since its inaugural flights in 2010 and is capable of acquiring 112° swaths with an areal rate of 33 km2 min-1 at 2-m ground sampling distance. The sensor performance envelope allows for a number of operational modes that can be deployed against a variety of acquisition scenarios. Its suitability for environmental remote sensing applications is illustrated with reference to a number of representative case studies drawn from several years of airborne collections within the Los Angeles Basin and beyond.
The Aerospace Corporation’s sensitive Mako thermal infrared imaging spectrometer, which operates between 7.6 and 13.2 microns at a spectral sampling of 44 nm, and flies in a DeHavilland DHC-6 Twin Otter, has undergone significant changes over the past year that have greatly increased its performance. A comprehensive overhaul of its electronics has enabled frame rates up to 3255 Hz and noise reductions bringing it close to background-limited. A replacement diffraction grating whose peak efficiency was tuned to shorter wavelength, coupled with new AR coatings on certain key optics, has improved the performance at the short wavelength end by a factor of 3, resulting in better sensitivity for methane detection, for example. The faster frame rate has expanded the variety of different scan schemes that are possible, including multi-look scans in which even sizeable target areas can be scanned multiple times during a single overpass. Off-nadir scanning to ±56.4° degrees has also been demonstrated, providing an area scan rate of 33 km2/minute for a 2-meter ground sampling distance (GSD) at nadir. The sensor achieves a Noise Equivalent Spectral Radiance (NESR) of better than 0.6 microflicks (μf, 10-6 W/sr/cm2/μm) in each of the 128 spectral channels for a typical airborne dataset in which 4 frames are co-added. An additional improvement is the integration of a new commercial 3D stabilization mount which is significantly better at compensating for aircraft motions and thereby maintains scan performance under quite turbulent flying conditions. The new sensor performance and capabilities are illustrated.
Remote sensing measurements of ammonia emitted by a near-monotypic seabird colony established on an islet in the Salton Sea (Imperial Valley, California) are described. The compact (3 ha) nature of the island affords a constrained environment that provides an ideal case study for validating models of ammonia emission from seabird colonies. Incorporated as part of a coordinated approach to future field campaigns, the techniques demonstrated would provide a means for validation and refinement of current seabird ammonia emission models on a case study basis. This would contribute to an improved understanding of the nitrogen cycle, especially in remote ocean locales.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.