We show a broad range of swept source performances based on a highly-flexible external cavity laser architecture.
Specifically, we demonstrate a 40-kHz 1300-nm swept source with 10 mm coherence length realized in a compact
butterfly package. Fast wavelength sweeping is achieved through a 1D 20-kHz MEMS mirror in combination with an
advanced diffraction grating. The MEMS mirror is a resonant electrostatic mirror that performs harmonic oscillation only
within a narrow frequency range, resulting in low-jitter and long-term phase-stable sinusoidal bidirectional sweep
operation with an A-scan rate of 40 kHz. The source achieves a coherence length of 10 mm for both the up- and downsweep
and an OCT sensitivity of 105 dB.
We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain
medium. These devices feature significantly higher saturation power than conventional semiconductor optical
amplifiers and can thus improve the limited output power of swept sources in this wavelength range. We
demonstrate that a tapered amplifier can be integrated into a
fiber-based swept source and allows for high-speed
FDML operation. The developed light source operates at a sweep rate of 116kHz with an effective average
output power in excess of 30mW. With a total sweep range of 70 nm an axial resolution of 15 μm in air (~11μm
in tissue) for OCT applications can be achieved.
Optical Coherence Tomography is a powerful tool for diagnostic imaging of the ocular posterior chamber. Recent
advances in OCT technology have facilitated acquisition of high resolution volumetric images of the retina and optic
nerve head. In this report, we investigate optic nerve head imaging in humans using a home-built laboratory grade OCT
system in the 800nm wavelength region. We also introduce the development of a computational model of the optic nerve
head morphology in order to study physiological changes which may be associated with elevated intra-ocular pressure.
We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain
medium. These devices feature significantly higher saturation power than conventional semiconductor optical
amplifiers and can thus improve the limited output power of swept sources in this wavelength range. We
demonstrate that a tapered amplifier can be integrated into a fiber-based swept source and allows for high-speed
FDML operation. The developed light source operates at a sweep rate of 116kHz with an effective average
output power in excess of 30mW. With a total sweep range of 70 nm an axial resolution of 15 μm in air (~11μm in tissue) for OCT applications can be achieved.
We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on
semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated
that even two SOAs with nearly equal gain spectra can improve the performance of the light source when installed
in series. This Serial SOA configuration (SSOA) is compared with the common MasterOscillator/Power Amplifier
architecture (MOPA) where a single SOA is used as laser gain medium in the resonator and a second one outside
as booster. We show that for high sweep rates (20 kHz) the SSOA configuration can maintain a significantly
higher bandwidth (~50% higher) compared to the MOPA architecture. Correspondingly narrower point spread
functions can be generated in a Michelson interferometer.
We report on a new optics design for an optical coherence tomography (OCT) balloon imaging catheter. The design involves a miniature compound gradient-index (GRIN) rod lens, which consists of a fiber optic mode-field reducer and relay rod lenses to achieve predictable high lateral resolution at a desired large working distance. The compound lens design significantly simplifies the engineering process for an OCT catheter and enables 3-D full circumferential cross sectional imaging of large luminal organs such as human esophagus. An as-designed OCT catheter is developed and demonstrated for real-time in vivo swine esophagus imaging in a 3-D spiral fashion.
A fiber Bragg grating (FBG) sensor using wide and fast mode-locked wavelength-swept laser is demonstrated. The key device is the optical source, wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. This laser has wide tuning range (over 100nm) and a fast tunable speed (up to 20 kHz). Hence, it is suited for the dynamic FBG sensor system. Our sensor system enables dynamic measurement of strain in real-time at a high measurement rate. In this system,the signals of the sensor are obtained by analyzing temporal waveforms of refleceted light from the FBG without observing the spectrum. A measurement speed as high as 1 kHz is achieved when the wavelength-tunable source is swept at 1 kHz rate. The stability (indicated by the standard deviations of the results) is 30-60 pm in optical spectrum.
We demonstrate a tunable laser operating in the 1-1.1 &mgr;m wavelength region with a tuning range of 43 nm (FWHM), an
output power of 19 mW and coherence length of 14 mm. The source is based on a master laser consisting of a cavity
tuned ring configuration with a fiber Fabry Perot filter used as a tuning element and a semiconductor amplifier as gain
medium. The output of the master laser is subsequently power boosted using an Ytterbium doped fiber amplifier
(YDFA). In addition to providing a power boost, we demonstrate that by tailoring the gain spectrum of the YDFA it is
possible to increase the FWHM scanning range by 7 nm compared to that of the master laser.
A swept laser source at center wavelength of 1060 nm for Fourier domain optical coherence tomography (FDOCT) was
demonstrated. The laser is composed of a fiber-coupled SOA gain module, a fiber Fabry-Perot tunable filter, fiber
isolators and couplers to form a ring laser. The laser is capable of a scanning range of 64 nm and coherence length of
9.8 mm at 2 KHz sweep rate. With the built swept source, a FDOCT system was developed which can achieve 12 &mgr;m
axial resolution in tissue. Imaging of pig retina was demonstrated with the FDOCT system.
High-speed wavelength-swept lasers capable of providing wide frequency chirp and flexible temporal waveforms could
enable numerous advanced functionalities for defense and security applications. Powered by high spectral intensity at
rapid sweep rates across a wide wavelength range in each of the 1060nm, 1300nm, and 1550nm spectral windows, these
swept-laser systems have demonstrated real-time monitoring and superior signal-to-noise ratio measurements in optical
frequency domain imaging, fiber-optic sensor arrays, and near-IR spectroscopy. These same capabilities show
promising potentials in laser radar and remote sensing applications.
The core of the high-speed swept laser incorporates a semiconductor gain module and a high-performance fiber Fabry-
Perot tunable filter (FFP-TF) to provide rapid wavelength scanning operations. This unique design embodies the
collective advantages of the semiconductor amplifier's broad gain-bandwidth with direct modulation capability, and the
FFP-TF's wide tuning ranges (>200nm), high finesse (1000 to 10,000), low-loss (<3dB), and fast scan rates reaching
20KHz. As a result, the laser can sweep beyond 100nm in 25μsec, output a scanning peak power near mW level, and
exhibit excellent peak signal-to-spontaneous-emission ratio >80dB in static mode. When configured as a seed laser
followed by post amplification, the swept spectrum and power can be optimized for Doppler ranging and remote sensing
applications. Furthermore, when combined with a dispersive element, the wavelength sweep can be converted into high-speed
and wide-angle spatial scanning without moving parts.
Two swept-wavelength light sources based on Ytterbium doped fibre amplifiers are demonstrated. The filtered output from a superfluorescent source is scanned over 20 nm, and used for topography with an axial resolution of <40 μm. Dynamic properties of a swept-wavelength YDFA based ring laser is investigated. This is the first reported results with dynamically swept sources centered in the 1 μm wavelength range, which is expected to be important for future development of optical coherence tomography systems for retinal imaging.
KEYWORDS: Optical coherence tomography, Laser sources, Signal to noise ratio, Cornea, Image segmentation, Interferometry, Reflectors, Photodiodes, Interferometers, In vivo imaging
The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.
We demonstrate a high-speed tunable, continuous wave laser source for Fourier domain OCT. The laser source is based on a fiber coupled, semiconductor optical amplifier and a tunable ultrahigh finesse, fiber Fabry Perot filter for frequency tuning. The light source provides frequency scan rates of up to 20,000 sweeps per second over a wavelength range of >70 nm FWHM at 1330 nm, yielding an axial resolution of ~14 μm in air. The linewidth is narrow and corresponds to a coherence length of several mm, enabling OCT imaging over a large axial range.
A novel high-speed fiber Fabry-Perot tunable filter works fast enough (three orders of magnitude faster than commercially available ones) to allow packet switching for all-optical broadcast-and-select Wavelength Division Multiplexed network. Each node transmits at a Gb/s on dedicated wavelength over the passive-star coupler to all other nodes. The receiver at each node scans through all the wavelengths and selects signals addressed for that node.
A fast tunable filter enables a different switching technology to be implemented for an all-optical network. The fiber Fabry- Perot tunable filter works fast enough (three orders of magnitude faster than commercially available Fabry-Perot filters) to allow packet switching to be implemented on an experimental all-optical wavelength-division-multiplexed packet-switched network. The system uses a broadcast-and- select design, in which each node transmits at a Gb/s at dedicated wavelength. The data is transmitted over the passive-star network to all other nodes. The receiver at each node scans through all the wavelengths and selects signals addressed for that node. The major challenge of combining packet switching with the optical network is the tuning at the receiver that must be performed in microseconds, as opposed to milliseconds. The use of the optical filter provides a technical breakthrough for the bottleneck of high-speed packet switching. Another challenge of fast optical packet switching is clock-recovery and synchronization of the packets. Conventional circuits are inadequate when a fast clock recovery for the short length packets is required because they need thousands bits to lock on. We have developed a system for fast clock recovery on packet-by-packet basis using a surface acoustic wave filter for narrow band filtering. The combined optical and electronic components recover the clock circuit as fast as several hundred bits.
Merging optical technology with fast packet switching will develop generation-after-next advanced technologies scalable to a Tbit/second. Serious challenge of such an implementation is the lack of an optical switch that would have a fast tuning speed, wide tuning range, low insertion loss, and be highly selective with a narrow passband at the same time. For this purpose we propose using a recent experimental Los Alamos National Laboratory and Micron Optics Co. break through--building an optical switch that works three orders of magnitude faster than its commercial predecessors, has a wide tuning range and low insertion loss, and is highly selective. Fast optical tuning in several microseconds is necessary to perform high-speed optical packet switching. One approach to achieve fast wavelength tuning is to use high-speed piezoelectrically- driven Fiber Fabry-Perot tunable filters. A special controller has substantially improved the shape of the driving signal and the response of the filter. The fastest switching time achieved without ringing is 3.0 microseconds. At the same time, implementation of high-speed optical packet switching rises the challenge of the bit synchronization of the packets. Conventional circuits are inadequate when a fast clock recovery for the short length packets is required because they need thousands bits to lock on. To deal with it, we propose to implement a bit clock synchronization technique for high-sped packet-switched optical network on a packet-per-packet basis. As a result, a new packet-switched media access control protocol can be designed to minimize the searching time.
Tunable optical filters are important building blocks for all-optical systems and networks. Fast optical tuning in several microseconds is necessary to perform high-speed optical packet switching. Multi-gigabit/sec packet-switching will provide flexibility and higher network throughput when large numbers of users communicate simultaneously. One approach to achieve fast wavelength tuning is to use high- speed piezoelectrically driven fiber Fabry-Perot tunable filters (FFP-TFs). The requirement for tuning in microseconds raises a whole new set of challenges, such as ringing, thermostability and mechanical inertia control. It was shown that correlation between the mechanical resonance and optical response of the filter is important for the filter's speed and for mounting hardware and control circuitry optimization. These features together with the FFP-TF's high capacitance (approximately 0.25 - 0.5 microfarad) are being folded into building a special controller to substantially improve the shape of the driving signal and the response of the filter. The resultant controller enables tuning the high-speed FFP-TF three- orders-of-magnitude faster than that possible with standard commercial FFP-TFs. The fastest switching time achieved is 2.5 microseconds. As the result, a new packet-switched media access control protocol is being designed to minimize the searching time. The filter scans only once through the entire optical region and then tunes to all the required channels one after another in a few microseconds. It can help update Rainbow-2 Broadcast-and-Select High-Speed Wavelength Division Multiplexing All-Optical network that currently has a circuit-switched protocol using standard FFP-TFs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.