Breast cancer represents the most common type of cancer worldwide among women. One of the most important diagnostic methods of this disease are mammograms, however, the high prevalence of breast cancer has not been reduced due to the incorrect diagnosis of these images, since they can be complex to interpret. An approach that represents a fundamental process for the improvement of this diagnosis is digital image processing, since it can facilitate the interpretation of the images for the specialists. In this work is proposed the implementation of a new multilevel segmentation approach based on the minimum cross-entropy threshold - Harris Hawks Optimization (MCET-HHO) metaheuristic algorithm, identifying regions within the breast that have abnormal tissue. Then, these regions are subjected to an automatic classification system based on a bag-of-visual-words (BoVW) approach to identify healthy tissue, benign tumors, and malignant tumors. According to the results, the classifier reached an average accuracy of 0.86 in the training stage and 0.73 in the testing, proving to be statistically significant in the automatic classification of mammograms, presenting a preliminary tool for the support of specialists in the diagnosis of mammography images.
Osteoarthritis is the most common rheumatic disease in the world. Knee pain is the most disabling symptom in the disease, the prediction of pain is one of the targets in preventive medicine, this can be applied to new therapies or treatments. Using the magnetic resonance imaging and the grading scales, a multivariate model based on genetic algorithms is presented. Using a predictive model can be useful to associate minor structure changes in the joint with the future knee pain. Results suggest that multivariate models can be predictive with future knee chronic pain. All models; T0, T1 and T2, were statistically significant, all p values were < 0.05 and all AUC > 0.60.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.