Birds are outstanding flyers with high aerodynamic efficiency and agility, especially under dynamic flight conditions. Flight feathers play a key role in achieving these remarkable performances based on their flexible and hierarchical structures. To develop bio-inspired micro air vehicles (MAVs), researchers have adopted rigid feather-shaped panels, membrane-type artificial feathers and natural feathers as part of the morphing wing platform. In this paper, bio-inspired, 3D printed feathers with hierarchical structures resembling natural flight feathers are presented. Moreover, piezoresistive and piezoelectric sensing components are embedded in the 3D printed feather rachis, which can provide sensory information on the aerodynamic forces and feather vibrations. The 3D printed feather transducers are characterized through vibration testing and wind tunnel testing, and are finally integrated into dried, spread wings for aerodynamic force and vibration sensing of the entire wing. Therefore, the 3D printed feather transducers can potentially be used on future MAVs to improve aerodynamic efficiency and allow fly-by-feel sensing.
A bird’s tail plays a crucial role in flight dynamics by making rapid fine-tuned movements for precise attitude stabilization in addition to large scale deformations used in conjunction with the wings to achieve prolonged maneuvers. However, this control surface geometry differs substantially from those of traditional aircraft such as the vertical rudder which has slower actuation times, less versatility relative to control authority, and increased radar signatures. The current work aims to increase maneuverability in rudderless UAVs using Macro Fiber Composites (MFCs) and multi-material 3D printing to achieve a bidirectional camber morphing horizontal tail. The MFCs are customized with a 55° fiber orientation to achieve bending-twisting coupling resulting in complex curvatures. Previous work investigated the actuator’s capabilities to control yaw and act as an air break during sideslip. The current work investigates the actuator’s ability to control pitch and also analyzes its effectiveness as a rudder during changes in angle of attack. The control effectiveness was assessed via wind tunnel experiments of a full bodied bioinspired UAV of 0.34m wing span with active horizontal tail. Alpha sweeps were conducted across a range of wind speeds. While the complex curvature of the actuator is desirable for control of both yaw and pitch, it also causes coupling between these two degrees of freedom. The magnitude of this coupling is also investigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.