In this paper we theoretically study the responsivity of Metal-Insulator-Metal nanostructures to light illumination over a broad wavelength band (1 - 25 microns) and we examine the role of a local field enhancement and electrostatic field on the responsivity.
We have previously developed a simple pyrolytic method for large-scale production of aligned multi-wall carbon nanotube arrays perpendicular to the substrate. These aligned carbon nanotube arrays can be transferred onto various substrates of particular interest (e.g. polymer films for organic optoelectronic devices) in either a patterned or non-patterned fashion. The well-aligned structure provides additional advantages for not only an efficient device construction but also for surface functionalization. The surface functionalization of aligned carbon nanotubes is particularly attractive, as it allows surface characteristics of the aligned carbon nanotubes to be tuned to meet specific requirements for particular applications while their alignment structure can be largely retained. These aligned carbon nanotubes with tunable surface characteristics are of great significance to various practical applications ranging from sensors to electronics. Single-strand DNA chains could be covalently immobilized onto plasma-activated aligned carbon nanotubes for sensing complementary DNA and/or target DNA chains of specific sequences with a high sensitivity and selectivity. Furthermore, glucose oxidase (GOX) could also be immobilized onto the aligned carbon nanoutbe arrays by electropolymerization of pyrrole in the presence of GOX. The resultant GOX-containing polypyrrole-carbon nanotube coaxial nanowires were shown to be promising new sensing active materials for making advanced glucose sensors with a high sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.