KEYWORDS: Image segmentation, Tissues, Fuzzy logic, Magnetic resonance imaging, Brain, Positron emission tomography, Neuroimaging, Alzheimer's disease, Single photon emission computed tomography, Signal to noise ratio
Segmentation of brain images especially into three main tissue types: Gray Matter (GM), Cerebrospinal Fluid (CSF), and White Matter (WM) has important role in computer aided neurosurgery and diagnosis. In imaging, physical phenomena and the acquisition system are responsible for noise and the Partial Volume Effect (PVE) respectively, which affect the uncertainty and the imprecision. To reduce the effect of these different imperfections, we propose a clustering approach that is based on a fuzzy- possibilistic segmentation process for the assessment of WM, GM and CSF volumes from Alzheimer’s brain images. The brain segmentation scheme which is illustrated in the study of Alzheimer’s disease using Alzheimer’s disease Neuroimaging Initiative (ADNI) and real images take in consideration the PVE and it is less sensitive to noise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.