We investigate a two-wavelength method for recording a persistent hologram in a doped photopolymer. The recording method is based on two separated optical excitations of the four-energy-level system of the doped element, one at λ=325 nm as the sensitizing wavelength and the other at λ=647 nm as the writing wavelength, allowing for an experimental demonstration of nondestructive readout in phenanthrenequinone-doped poly(methyl methacrylate). Further, a four-energy-level rate equations model is proposed for describing the dynamics of hologram recording. The model successfully explains our experimental finding and further provides a general method to investigate such a two-wavelength holographic recording in photopolymer.
We report holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer material via the two-wavelength technique. By using gating light at 325 nm and writing light at 647 nm two-wavelength holographic recording is achieved. Non-volatile readout of a holographic image under 24 hours continuous reconstruction is demonstrated. A four-level modeling for the photochemical procedures of the two-wavelength holographic recording is proposed, and dynamic behaviors of the holograms are illustrated. A planar integrated optical correlator system is constructed by selective writing of holographic optical elements via two-wavelength holographic recording on a photopolymer disk.
Two-wavelength holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer is demonstrated. By using 325 nm laser as a gating illumination during the holographic recording with 647 nm laser, a volume hologram with diffraction efficiency of ∼ 4% can be recorded in a 2 mm thick sample. In addition, the Bragg selectivity curve with clear sinc nulls is demonstrated. These results support further applications as recording media for volume holographic device with extended spectral response and selective recording property.
We fabricate two phenanthrenequinone-doped copolymers which can improve the holographic recording characteristics of phenanthrenequinone-doped poly(methyl-methacrylate) (PQ/PMMA) photopolymer. In these materials, the polymer matrix of PQ/PMMA is modified to be copolymers, which composed of either poly(methyl-methacrylate-co -trimethylolpropane-triacrylate) or poly(methyl-methacrylate-co-acrylic acid 2-phenoxyethyl ester), respectively. With the chemical analyses of these materials before and after light exposure, we investigate the physical mechanism of the holographic recording in those copolymer samples. In addition, the holographic characteristics of different samples, including dynamic range and sensitivity, have been measured. These experimental results demonstrate that modification of the monomers is an efficient method to improve the material properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.