CT is routinely used for radiotherapy planning with organs and regions of interest being segmented for diagnostic evaluation and parameter optimization. For cardiac segmentation, many methods have been proposed for left ventricular segmentation, but few for simultaneous segmentation of the entire heart. In this work, we present a convolutional neural networks (CNN)-based cardiac chamber segmentation method for 3D CT with 5 classes: left ventricle, right ventricle, left atrium, right atrium, and background. We achieved an overall accuracy of 87.2% ± 3.3% and an overall chamber accuracy of 85.6 ± 6.1%. The deep learning based segmentation method may provide an automatic tool for cardiac segmentation on CT images.
Cardiovascular disease is a leading cause of death in the United States. The identification of cardiac diseases on conventional three-dimensional (3D) CT can have many clinical applications. An automated method that can distinguish between healthy and diseased hearts could improve diagnostic speed and accuracy when the only modality available is conventional 3D CT. In this work, we proposed and implemented convolutional neural networks (CNNs) to identify diseased hears on CT images. Six patients with healthy hearts and six with previous cardiovascular disease events received chest CT. After the left atrium for each heart was segmented, 2D and 3D patches were created. A subset of the patches were then used to train separate convolutional neural networks using leave-one-out cross-validation of patient pairs. The results of the two neural networks were compared, with 3D patches producing the higher testing accuracy. The full list of 3D patches from the left atrium was then classified using the optimal 3D CNN model, and the receiver operating curves (ROCs) were produced. The final average area under the curve (AUC) from the ROC curves was 0.840 ± 0.065 and the average accuracy was 78.9% ± 5.9%. This demonstrates that the CNN-based method is capable of distinguishing healthy hearts from those with previous cardiovascular disease.
Hyperspectral imaging (HSI) is an emerging imaging modality that can provide a noninvasive tool for cancer detection and image-guided surgery. HSI acquires high-resolution images at hundreds of spectral bands, providing big data to differentiating different types of tissue. We proposed a deep learning based method for the detection of head and neck cancer with hyperspectral images. Since the deep learning algorithm can learn the feature hierarchically, the learned features are more discriminative and concise than the handcrafted features. In this study, we adopt convolutional neural networks (CNN) to learn the deep feature of pixels for classifying each pixel into tumor or normal tissue. We evaluated our proposed classification method on the dataset containing hyperspectral images from 12 tumor-bearing mice. Experimental results show that our method achieved an average accuracy of 91.36%. The preliminary study demonstrated that our deep learning method can be applied to hyperspectral images for detecting head and neck tumors in animal models.
Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy.
However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this
paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement.
First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions.
Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels
from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the
deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar
atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT
images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the
manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the
prostate on CT images and thus can have a variety of clinical applications.
Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.
This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37±0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.