During 2014-2016, the Laser guide star (LGS) adaptive optics (AO) system observation campaign has been carried out on Lijiang 1.8 meter telescope. During the campaign, two generation LGS AO systems have been developed and installed. In 2014, a long-pulsed solid Sodium prototype laser with 20W@400Hz, a beam transfer optical (BTO) system, and a laser launch telescope (LLT) with 300mm diameter were mounted onto the telescope and moved with telescope azimuth journal. At the same time, a 37-elements compact LGS AO system had been mounted on the Bent-Cassegrain focus and got its first light on observing HIP43963 (mV= 8.18mv) and reached Sr=0.27 in J Band after LGS AO compensation. In 2016, the solid Sodium laser has been upgrade to stable 32W@800Hz while D2a plus D2b repumping is used to increase the photon return, and a totally new LGS AO system with 164-elements Deformable Mirror, Linux Real Time Controller, inner closed loop Tip/tilt mirror, Multiple-PMT tracking detector is established and installed on the telescope. And the throughput for the BTO/LLT is improved nearly 20%. The campaign process, the performance of the two LGS AO systems especially the latter one, the characteristics of the BTO/LLT system and the result are present in this paper.
An adaptive optics system (AOS), which consists of a 73-element piezoelectric deformable secondary mirror (DSM), a 9x9 Shack-Hartmann wavefront sensor and a real time controller has been integrated on the 1.8m telescope at the Gaomeigu site of Yunnan Astronomical Observatory, Chinese Academy of Sciences. Compared to the traditional AOS on Coude focus, the DSM AOS adopts much less reflections and consequently restrains the thermal noise and increases the energy transmitting to the system. Before the first on-sky test, this system has been demonstrated in the laboratory by compensating the simulated atmospheric turbulence generated by a rotating phase screen. A new multichannel-modulation calibration method which is used to measure the DSM based AOS interaction matrix is proposed. After integration on the 1.8m telescope, the closed-loop compensation of the atmospheric turbulence with the DSM based AOS is achieved, and the first light results from the on-sky experiment are reported.
Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.
A compact, high-speed line scanning quasi-confocal ophthalmoscope (LSO) for retina imaging is presented in this paper. By using a line beam to illuminate the retina, meanwhile a linear array sensor is used for imaging the retina, the LSO system significantly reduces the size, complexity, and cost comparing to a conventional confocal scanning laser ophthalmoscope (CSLO). With only one moving scanner to provide raster scanning of the line beam of the retina, the imaging frequency achieves 160 Hz and the lateral resolution is nearly 10 μm for 1024×330 pixels imaging mode. Preliminary experiments are performed for imaging the macula, the optic nerve head and other targets, providing high resolution and high speed videos of human retina.
Adaptive optics is implemented in a confocal scanning fluorescence microscope with wavefront sensorless scheme. Using the image sharpness as the optimization metric, aberration correction is performed to compensate both system- and specimen-induced aberrations by using stochastic parallel gradient descent algorithm based upon Zernike polynomial modes. In vivo vascular imaging of mice ear is completed and the results revealed the improved signal and resolution leading to in substantially enhanced image contrast with aberration correction which allowed us to detect clearer vasculature structures.
We have demonstrated adaptive correction of specimen-induced aberration during in vivo imaging of mouse bone marrow vasculature with confocal fluorescence microscopy. Adaptive optics system was completed with wavefront sensorless correction scheme based on stochastic parallel gradient descent algorithm. Using image sharpness as the optimization metric, aberration correction was performed based upon Zernike polynomial modes. The experimental results revealed the improved signal and resolution leading to a substantially enhanced image contrast with aberration correction. The image quality of vessels at 38- and 75-μm depth increased three times and two times, respectively. The corrections allowed us to detect clearer bone marrow vasculature structures at greater contrast and improve the signal-to-noise ratio.
The pyramid wavefront sensor is an innovative device with the special characteristics of variable gain and adjustable
sampling in real time to enable an optimum match of the system performance, which make it an attractive option for next
generation adaptive optics system compared with the Shack-Hartmann. At present most of the pyramid wavefront sensor
are used with modulation based on oscillating optical component in order to give a linear measurement of the local tilt,
but the PWFS without modulation would greatly simplify the optical and mechanical design of the adaptive optics
system and also give highest sensitivity as expected to be achieved. In this paper we describe the optical setup of our
adaptive optics system with nonmudulated pyramid wavefront sensor. In this system, the pyramid wavefront sensor with
8×8 sub-apertures in the pupil diameter has been designed, and the deformable mirror with 61 actuators based on the
liquid-crystal spatial light modulator is used to introduce aberrations into the system, as well as to correct them
afterwards. The closed-loop correction results of single order Zernike aberrations and the Kolmogorov turbulence phase
screen are given to show that the PWFS without modulation can work as expected for closed-loop system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.