The combination of quantum materials and metasurfaces promises intrinsically new functionalities, driven by the wide range of novel phenomena inherent to quantum materials and the ability to control them with metamaterials. Two-dimensional (2D) quantum materials, such as graphene and transition metal dichalcogenides, have attracted much attention in this respect due to their ability to replicate nearly all of the properties of bulk quantum materials at the nanoscale and the relative ease in combining them with one another as well as incorporating them into new device architectures. Here, I will describe our recent studies combining 2D quantum materials and metasurfaces to achieve new and enhanced functionalities, including tunable THz transmission and Faraday rotation in graphene microribbon-based metasurfaces and control over exciton emission/dynamics in WSe2 monolayer/metasurface structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.